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Abstract in English

The rapid urbanisation of modern societies has led to an increased demand for efficient, sustain-

able, and intelligent transportation solutions. Intelligent Transportation Systems play a crucial

role in addressing these challenges by leveraging emerging technologies to optimise mobility ser-

vices and enhance public transport accessibility. A key component of Intelligent Transportation

Systems is transport mode detection, which utilises smartphone sensor data and machine learn-

ing to infer how individuals travel. This capability enhances mobility analytics, enables real-time

travel behaviour analysis, and supports automated fare collection systems, reducing reliance on

manual ticketing while improving public transport efficiency. However, existing transport mode

detection methods often depend on centralised processing or external infrastructure, leading to

challenges such as latency, increased operational costs, and privacy concerns. Additionally, a lack

of standardised methodologies and datasets results in significant discrepancies between existing

approaches, complicating comparisons and limiting the generalisability of research findings. Fol-

lowing a Design Science research methodology, this thesis explores various facets of transport

mode detection through an iterative process of model development, evaluation, and refinement,

with a particular emphasis on on-device solutions for mobile devices. A key contribution of

this thesis is the creation of a diverse and representative dataset, spanning multiple devices,

operating systems, and transport environments, which facilitates the development of methods

that generalise effectively across real-life conditions. Furthermore, a structured framework for

feature importance and reduction is introduced, systematically identifying the most relevant fea-

tures to enhance classification performance while minimising computational overhead, making

models more suitable for resource-constrained devices. Additionally, various machine learn-

ing techniques, including deep learning and traditional classifiers, are employed and evaluated.

The results demonstrate the ability to infer transport modes across a wide range of modalities

and operating systems, contributing toward more practical real-life implementations. Through

multiple iterations, this research develops and evaluates a lightweight, platform-agnostic frame-

work for transport mode detection, demonstrating its practical applicability in real-life scenarios

with minimal computational overhead. By contributing to the standardisation of methodologies



through the creation of a diverse dataset, a structured feature-importance framework, and a

platform-agnostic framework that ensures cross-platform compatibility and reduces computa-

tional overhead for mobile devices, this thesis advances the fields of Intelligent Transportation

Systems and Smart Mobility. The findings provide a foundation for future innovations in data-

driven mobility services, supporting the transition toward adaptive, inclusive, and more efficient

public transportation networks.



Abstract in Norwegian

Den raske urbaniseringen av samfunnet har ført til økt etterspørsel etter effektive, bærekraftige

og intelligente transportløsninger. Forskningsfeltet ”intelligente transportsystemer” spiller en

avgjørende rolle i å møte disse utfordringene ved å utnytte nye teknologier for å optimalisere

mobilitetstjenester og forbedre tilgjengeligheten til kollektivtransport. En sentral komponent

i intelligente transportsystemer er transportmodusdeteksjon, som bruker sensordata fra smart-

telefoner og maskinlæring for å fastsl̊a hvordan enkeltpersoner reiser. Denne funksjonaliteten

forbedrer mobilitetsanalyse, muliggjør sanntidsanalyse av reiseatferd og støtter automatiserte

billettsystemer, noe som reduserer avhengigheten til manuell billettering samtidig som effek-

tiviteten i kollektivtransporten økes. Eksisterende metoder for transportmodusdeteksjon er imi-

dlertid ofte avhengige av sentralisert prosessering eller ekstern infrastruktur, noe som medfører

utfordringer knyttet til dataforsinkelser, økte driftskostnader og personvern. I tillegg fører man-

gel p̊a standardiserte metoder og datasett til betydelige forskjeller mellom eksisterende tilnær-

minger, noe som kompliserer sammenligninger og begrenser generaliserbarheten av forskningsre-

sultater. Ved å følge en Design Science forskningsmetodologi utforsker denne avhandlingen ulike

aspekter ved transportmodusdeteksjon gjennom en iterativ prosess med modellutvikling, eval-

uering og forbedring, med særlig vekt p̊a lokale løsninger for mobile enheter. Et sentralt bidrag

i dette arbeidet er utviklingen av et variert og representativt datasett som dekker flere enheter,

operativsystemer og transportmoduser, og som muliggjør utviklingen av metoder som generalis-

erer effektivt under reelle forhold. Videre introduseres et strukturert rammeverk for å evaluere og

redusere antall inputvariabler, gjennom å systematisk identifisere de mest relevante. Dette gjør

det mulig å forbedre klassifikasjonsytelsen samtidig som beregningskostnaden reduseres, noe som

gjør modellene mer egnet for enheter med begrensede ressurser. I tillegg er det anvendt og eval-

uert ulike maskinlæringsteknikker, inkludert dyp læring og tradisjonelle klassifikasjonsmetoder.

Resultatene demonstrerer evnen til å identifisere transportmoduser p̊a tvers av ulike modaliteter

og operativsystemer, og dermed bidrar til mer praktiske implementeringer i reelle scenarier.

Gjennom flere iterasjoner utvikler og evaluerer denne forskningen et lettvekts, plattformagnos-

tisk rammeverk for transportmodusdeteksjon, og demonstrerer dets praktiske anvendelighet i



virkelige scenarier med minimal beregningskostnad. Ved å bidra til standardisering av metoder

gjennom utviklingen av et variert datasett, et strukturert rammeverk for evaluering av input-

variabler, samt et plattformagnostisk rammeverk som sikrer plattformkompatibilitet og redusert

beregningskostnad for mobile enheter, fremmer dette arbeidet feltene ”intelligente transportsys-

temer” og ”smart mobilitet”. Funnene gir et solid grunnlag for fremtidige innovasjoner innen

datadrevne mobilitetstjenester og støtter overgangen til mer adaptive, inkluderende og effektive

kollektivtransportsystemer.
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Chapter 1

Introduction

More than half of the global population currently resides in urban areas, a proportion

projected to increase to 68% by 2050 [1]. This rapid urban expansion presents significant

challenges, particularly in transportation infrastructure. As cities grow, increased travel

demand leads to congestion, environmental degradation, and inefficiencies in mobility [2]–[4].

These issues have driven research into innovative solutions that enhance the sustainability and

efficiency of urban environments, one of which is the concept of smart cities [5]. Smart cities

leverage technology to optimise urban processes, improve decision-making, and enhance

sustainability [3], [5]–[8]. A core component of this vision is Intelligent Transportation Systems

(ITS) [3], which focus on improving mobility through real-time data analysis and automation.

Rather than addressing urbanisation broadly, ITS specifically enhances transportation

networks, aiding citizens, companies, and governments in optimising mobility solutions [6].

ITS encompasses a range of applications, including solutions for public and private transport,

with an emphasis on efficiency and safety across transportation systems [9].

Public transportation plays a critical role in addressing urban mobility challenges by reducing

emissions and alleviating congestion in densely populated areas [10], [11]. The integration of

smart technologies further enhances its potential. By utilising technological advancements,

such as sensor and network technology, substantial amounts of data regarding vehicles and

travellers can be gathered. This data forms the basis for real-time insights into issues such as

traffic congestion, delays, and travel behaviour [12], [13]. The widespread adoption of

smartphones has further improved these capabilities, enabling seamless data collection and

real-time optimisation of public transportation services. Leveraging advancements in sensor

technology, network connectivity, and smartphone-enabled data collection, machine learning

technologies can be applied to the collected data to analyse and predict trends, whether past,

9



present, or future. This capability allows policy makers, operators, and other stakeholders to

make informed decisions when planning infrastructure, such as new public transportation

routes and road construction [6], [12]. Real-time, automatic predictions of travellers’ modes of

transportation can also enable fully autonomous ticketing solutions, enhancing the efficiency,

inclusivity, and overall user experience of public transportation services [14].

The primary focus of this thesis is the integration of mobile technologies and machine learning

to develop efficient, on-device, platform-agnostic transport mode detection solutions.

Specifically, it seeks to address key challenges related to predictive accuracy, platform

compatibility, feature importance, and computational efficiency in transport mode detection.

To this end, this thesis investigates machine learning models and generalisable feature

importance techniques to construct frameworks that are evaluated in real-world contexts on

mobile devices, ensuring both platform compatibility and computational efficiency.

1.1 Intelligent Transportation Systems for Smart Mobility

The foundational ideas behind Intelligent Transportation Systems (ITS) can be traced back to

the 1930s [15], however the modern ITS framework began taking shape in the 1980s, driven by

a core group of transportation professionals who recognised the transformative potential of

emerging computing and communication technologies on highway transportation [9]. From

these origins, ITS has grown substantially, expanding far beyond its initial highway-focused

applications. Today, ITS is a broad, interdisciplinary field, encompassing areas such as

transportation management, infrastructure control, operations, and policy-making [16]. Its

applications now extend across various areas of transportation, including navigation services,

railway, maritime, and aviation systems [17]. Notably, significant advancements in ITS have

emerged from regions like Europe, the United States, and Japan, with more recent

contributions from South Korea and Singapore [15], [18].

The evolution of ITS has paralleled advances in computing technology, shifting from early,

infrastructure-based, one-way communication models, to complex multi-modal systems.

Modern ITS solutions now integrate smartphones, vehicles, infrastructure, and contextual data

to provide comprehensive mobility solutions [16]. Modern ITS systems are increasingly

data-driven, leveraging data analytics and machine learning to address contemporary

transportation challenges [12], [19], [20]. ITS is generally structured around six core

components: Advanced Transportation Management Systems (ATMS), Advanced Traveller
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Information Systems (ATIS), Advanced Vehicle Control Systems (AVCS), Commercial Vehicle

Operations (CVO), Advanced Public Transportation Systems (APTS), and Advanced Rural

Transportation Systems (ARTS) [12], [15], [20]. This research situates itself within the APTS

category, which focuses on technologies that enhance the efficiency and operational quality of

high-occupancy transport modes, such as buses and trains. Broadly, ITS aims to enhance the

efficiency, safety and convenience of transportation systems for both people and goods [9].

While ITS has traditionally emphasised large-scale, infrastructure-focused systems, a broader

and more holistic vision known as Smart Mobility has emerged.

Smart Mobility represents a holistic and evolving vision, with research in this field still in its

infancy. Consequently, no standard definitions have yet been established [21]. However, Smart

Mobility extends the infrastructure-oriented approach of ITS by emphasising multimodal

integration, reducing environmental impact, and enhancing user experiences [22], [23]. It

includes various environmentally focused initiatives, such as reducing private vehicle use and

integrating transport modes to decrease emissions [24]. Generally, Smart Mobility employs

digital technologies to integrate systems and transport modes, interacting with users to foster

a sustainable, safe, and accessible environment that meets citizens’ mobility needs [22].

Aligned with global sustainability goals [23], Smart Mobility seeks to reduce urban congestion,

enhance environmental sustainability, and create integrated travel experiences across diverse

transportation modes [22], [24]. It consists of actions designed to facilitate user mobility

whether by foot, bicycle, or public and private transport, with a shared objective of reducing

economic, environmental, and time costs [24]. A key aspect of Smart Mobility is public access

to real-time information, which enhances service efficiency by saving time, improving the travel

experience, lowering costs, and reducing CO2 emissions [24]. Smart Mobility systems collect

data from multiple sources, including traffic management systems, transport schedules,

citizen-provided crowd data, and sensor inputs from vehicles, traffic lights, parking areas, and

roads [21]. This multidisciplinary field intersects with diverse technologies and has evolved

from the convergence of digital advances with the transportation sector, resulting in new

methods for enhancing transportation network efficiency [22]. Solutions within Smart Mobility

often rely on technologies such as machine learning in combination with large amounts of data

gathered from interconnected devices [23]. As a result, this research is positioned not only

within the domain of ITS but also contributes to Smart Mobility by enhancing user experience,

inclusivity, and convenience in public transportation through enabling seamless automated fare
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collection, ultimately supporting sustainable and user-centred public transportation solutions.

1.2 Automated Fare Collection and Be-In/Be-out

Automated fare collection (AFC) in public transportation are integral components of Smart

Mobility initiatives [24] and Intelligent Transportation Systems (ITS) [15]. AFC systems have

already been widely implemented in urban transit networks [20], [25] and encompasses the

technologies and processes used to detect passenger boarding events and to process fare

payments [26]. Typically, current AFC implementations rely on the use of tokens or smart

cards to identify check-in and check-out activities for fare calculation purposes [26]. Prominent

examples of AFC solutions in Europe include the Andante Card in Portugal, the OV chipcard

system in the Netherlands, and the contactless payment system, Oyster, in London, UK. In

AFC solutions, passengers utilise smart cards or similar token-based devices to register entry

and exit from public transportation vehicles. Such AFC systems significantly facilitate other

ITS applications, as the data they generate serves as a key resource for analysing passenger

movement patterns [20]. However, current AFC systems face a number of notable challenges.

Among these challenges are prolonged boarding times caused by manual check-in processes,

which frequently require the use of physical payment mediums such as cards or tokens [26].

This requirement necessitates that passengers carry physical items, which can be inconvenient.

This inconvenience is particularly pronounced for individuals with cognitive functional

limitations, for whom managing physical payment methods can be a considerable source of

stress [27].

As a result, the concept of Be-In/Be-Out (BIBO) have emerged. BIBO enhances travel

convenience by automatically detecting when passengers enter or exit transportation services,

simplifying the payment process and minimising manual interactions [28]–[32]. BIBO solutions

differ from traditional public transport ticketing paradigms, where passengers are required to

explicitly check in or check out using either physical or digital tickets. In contrast, BIBO

systems aim to remove the need for active interaction from passengers by detecting their

presence passively [29]–[35]. The concept of BIBO can improve existing automated fare

collection (AFC) by allowing tickets to be automatically issued based on the user’s confirmed

presence on a transport service, thereby eliminating the need for manual ticketing processes

[28]–[31], [33], [34]. The primary challenge in implementing BIBO in public transportation lies

in achieving accurate in-vehicle presence detection mechanisms [28], [36], [37]. For fare

collection to occur without human intervention, it is crucial that the system reliably
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determines a user’s presence, preventing the deduction of funds from individuals who are not

actually utilising the service. Several methods exist for establishing user presence within public

transport vehicles.
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Figure 1.1: Approaches to mobile ticketing in public transportation. (a) Check-
in (CI): the user is left to select and purchase the most suitable ticket prior to departure
based on available fare information and leaves the vehicle upon arrival; (b) Check-in/check-
out (CICO): the user actively checks in using a mobile application or digital reader before
boarding and checks out upon arrival to make use of optimised fares; (c) Check-in/be-out
(CIBO): the user actively checks in before boarding using a mobile application or reader,
location data are acquired and communicated between the mobile device and a back-end server
to offer optimised fare upon disembarkation; (d) Be-in/be-out (BIBO): active check-in and
check-out are omitted, mobile sensor data are acquired and communicated to the back-end server
during the journey to recognise the transportation mode and destination to offer optimised fares.
[38]

The most common solutions involve some form of check-in and check-out mechanism, such as

scanning a QR code, reading an RFID tag, or manually checking in via a software application

[32], [39]. However, manual methods are not in line with the BIBO concept since they require
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the traveller to actively interact with the system, which can be time-consuming, cause

boarding and disembarking delays, and ultimately reduce the efficiency of the public transport

service. Additionally, manual methods are not fully inclusive, as explicit interactions may be

challenging for elderly passengers or individuals with physical or cognitive disabilities [27]. The

optimal solution would eliminate the need for explicit user interaction, embracing the BIBO

concept, where user presence is detected passively.

BIBO solutions can be implemented through various approaches, using different sensors and

technologies to address the challenge of passively establishing the presence of travellers. One

common method involves installing hardware within public transport vehicles to detect

passengers, often utilising technologies such as Bluetooth low-energy (BLE) [31], [33], [36], [40],

[41], which has been identified as a key enabler in achieving BIBO solutions [36]. However, this

approach faces limitations, such as difficulty distinguishing individual passengers and the

requirement for BLE to remain active throughout the trip [28], [33]. Furthermore, passengers

located outside the vehicle but within the BLE signal range may inadvertently be subject to

ticket issuance [34]. In order to address this challenge researchers are now applying novel

machine learning techniques in combination with smartphone sensor data to increase the

precision of in-vehicle presence detection in order to enable accurate automated fare collection

solutions [14], [37], [42].

1.3 Smartphone Sensor Data and Transport Mode Detection

In-vehicle presence detection systems rely on contextual information [43]. Smartphones are

particularly well-suited to provide such contextual information due to their widespread

availability and integrated sensors [44], [45]. As such, data from mobile devices serve as the

largest source of information on human mobility [46]. Modern smartphones are equipped with

numerous sensors capable of generating substantial amounts of data. However, not every

sensor is relevant for in-vehicle presence detection. The relevant smartphone sensors can be

categorised into three primary classes: inertial sensors, ambient sensors, and location sensors.

Inertial sensors measure the physical motion and orientation of the device, while ambient

sensors capture environmental conditions such as light or temperature levels. Location sensors

on the other hand, such as the Global Positioning System (GPS), determine the geographical

position of the device. By using data from inertial, ambient and location sensors in

combination with machine learning, it is possible to detect the presence of a user or to infer

the user’s mode of transportation [37], [47]. The most widely used mobile operating systems,
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Android and iOS, offer a variety of sensors, including accelerometers, gyroscopes, and

magnetometers [48]–[50]. The various raw sensor data can also be combined, in a process

called sensor fusion [51], to form new sensors available through the smartphone operating

systems, such as rotation vectors or gravity sensors. Data from smartphone sensors can be

utilised in order to develop solutions for intelligent public transportation [48]–[50]. Examples

of such systems are in-vehicle presence detection and transport mode detection (TMD).

TMD solutions can be categorised into three main approaches: statistical methods, rule-based

methods, and machine learning methods [52]. Statistical methods and rule-based approaches

typically struggle to differentiate between similar transport modes with high accuracy, such as

cars, buses, and trains [52], [53]. In contrast, machine learning approaches offer better

generalisation and improved discrimination between similar modes of transportation [54].

Therefore, this thesis focuses on employing machine learning methods towards improving

critical aspects relating to local transport mode detection.

Machine learning algorithms are integral to processing smartphone sensor data for TMD and

in-vehicle presence detection [55], [56]. While in-vehicle presence detection focuses on

identifying whether a user is inside a specific vehicle, TMD aims to classify the overall mode of

transportation the traveller is using (e.g., walking, cycling, or taking a bus). TMD can be used

to effectively manage the challenge of detecting whether passengers are inside a vehicle rather

than outside through accurate classification of the transportation mode. Thus, both challenges

are closely related and can be addressed using data from smartphone sensors [37], [55], [57].

Furthermore, TMD is also closely related to human activity recognition (HAR), which applies

similar techniques to infer a user’s activity rather than the mode of transport they are using.

HAR is central to mobile computing, as it automates the recognition of a user’s activities [58].

Traditionally, HAR has been associated with computer vision research, however, with the

increasing prevalence of mobile devices and wearables, the focus has shifted towards leveraging

inertial sensors (e.g., accelerometers and gyroscopes) instead of images or videos [59].

Consequently, TMD can be considered a subset of HAR, and many techniques developed for

HAR can be adapted to TMD [60], [61]. In fact, most research into TMD adopt approaches

similar to HAR, where raw sensor data is processed to extract features, which are then used to

train machine learning models for classification [62]. This growing emphasis on sensor-based

techniques reflects a wider shift toward leveraging ubiquitous smartphone data combined with
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machine learning to better understand and classify human activities and mobility.

Although this shift towards employing smartphone sensor data in combination with machine

learning is notable within the field of ITS and Smart Mobility, several challenges still remain.

Predominantly, existing systems for in-vehicle presence detection and transport mode

detection (TMD) depend on in-vehicle equipment and centralised architectures [47], [55], [57],

[63], which can lead to elevated infrastructure costs [14], [26]. Today, mobile devices represent

the largest source of data on human transportation patterns [46] and the constant data

transmission between travellers’ devices and onboard equipment or centralised servers can

result in latency [64] and potential costs to users.

Centralised systems also present significant privacy concerns, primarily due to the continuous

transfer of data from user devices to operators [65]. The transmitted data, especially precise

location information, can be cross-referenced with external datasets to identify individuals or

reveal sensitive details, such as home and work addresses, personal movement patterns, and

affiliations inferred from visits to specific locations [66]. While data from inertial sensors is less

precise, it can still pose privacy risks by enabling inferences about a user’s location, identity,

demographics, activities, and other characteristics when combined with additional data sources

[67]. These privacy concerns have driven a growing interest in solutions that operate locally on

users’ devices, avoiding centralised data processing [56], [65], [68].

Another challenge is that existing solutions demonstrate varying levels of accuracy,

particularly when applied across a diverse range of transportation modes. Furthermore, only a

limited number of studies have been implemented and evaluated on real-life devices, where

performance can differ significantly compared to controlled settings [56]. While a variety of

studies propose solutions for TMD [69]–[75], the proposed solutions often differ significantly in

the range of transport modes they can classify and the data being used to train the models.

Consequently, there are no established best practices regarding the selection of sensors,

algorithms, or similar methodologies that yield optimal performance in the context of TMD.

Moreover, nearly all existing studies propose solutions specifically for Android devices.

Although some address iOS [76]–[79], very few works address cross-platform capabilities of

local TMD on mobile devices [56]. These challenges may stem from the limited availability of

comprehensive datasets. Existing TMD datasets are scarce, and those that are available often

exhibit significant limitations, such as insufficient representation of participants, devices,
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operating systems, geographical regions, and transportation modes. This lack of standardised

benchmarking datasets further hampers the systematic evaluation and comparison of solutions

[80].

1.4 Research Questions and Contributions

In order to embrace the ongoing shift from centralised to decentralised mobile solutions, and to

support more privacy-friendly and cost-effective approaches, it becomes increasingly important

to investigate various aspects of transport mode detection from a mobile solutions perspective.

Given that mobile devices are inherently resource-constrained, a crucial consideration is

computational efficiency, which itself depends on several factors. One such factor relates to the

type of data used for inference, as different data sources provide varying insights and impose

distinct computational requirements that may influence the overall efficiency of the solution.

The significance lies not only in the nature of the data, but also in the number of data sources

employed, as an increased variety of inputs may lead to greater model complexity. This can

result in longer inference times and higher energy consumption, potentially diminishing the

user experience. It is therefore essential to examine which data sources are most critical for

accurately inferring the mode of transportation and which could potentially be excluded in

order to optimise computational efficiency. Such investigations necessitate access to large,

diverse and representative datasets that encompass a wide range of individuals, devices and

data types. While researchers have begun to explore certain aspects of on-device transport

mode detection using mobile data, much of the existing work remains platform dependent

rather than platform agnostic, which constitutes a central focus of this thesis. Although there

are multiple dimensions to on-device transport mode detection, this thesis is guided by the

following overarching research question:

RQ0: How can efficient on-device, platform-agnostic transport mode detection be achieved on

mobile devices?

In order to provide an answer to this overarching research question, different supporting

research questions have been formulated, with different emphasis on accuracy, features and

real-life evaluations:

RQ1: How can machine learning models achieve high accuracy in transport mode detection

across diverse transport modes, ensuring generalisability in real-life applications?
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RQ2: How can a standardised framework for feature evaluation and reduction systematically

identify relevant features, ensuring consistency and enabling reliable feature reduction

across machine learning models?

RQ3: How can transport mode detection models be optimised for real-time, low-latency

inference while maintaining computational efficiency on mobile devices?

In the context of this thesis, generalisability refers to the ability of the developed artefact to

effectively generalise across hardware, software, and users. To ensure that the findings of this

thesis have broad implications, the primary focus of investigation has been smartphones.

Consequently, within the scope of this thesis, mobile devices should be understood as referring

to smartphones. However, the findings extend beyond smartphones and are also applicable to

other mobile and resource-constrained devices. These considerations provide the contextual

foundation for the challenges addressed in this thesis.

1.4.1 Addressing the Research Questions

The following outlines how each research question is addressed through the methods,

experiments, and articles included in this thesis.

RQ0: How can efficient on-device, platform-agnostic transport mode detection be

achieved on mobile devices?

RQ0 serves as the overarching research question guiding this thesis and is addressed through

the combined outcomes of RQ1, RQ2, and RQ3. Efficiency in on-device processing is achieved

by optimising model complexity and reducing inference latency, as explored in RQ3.

Platform-agnostic capabilities are realised by developing and evaluating models across multiple

mobile operating systems and hardware configurations, as demonstrated in the articles

underpinning RQ1, RQ2, and RQ3. Through answering this question, this thesis presents a

unified approach to transport mode detection, synthesised through the underlying articles. It

addresses key limitations of prior centralised and platform-specific approaches, thereby

enabling practical and efficient implementation directly on mobile devices.

While Articles II–V directly contribute to answering the core research questions of this thesis,

Article I serves a complementary and foundational role. It provides a comprehensive survey

of automated fare collection systems in public transportation, identifying critical gaps and

motivating the need for user-independent, smartphone-based transport mode detection.

18



Although Article I does not directly address the research questions, its insights guided the

overall research direction and informed the problem framing for subsequent investigations.

RQ1: How can machine learning models achieve high accuracy in transport mode

detection across diverse transport modes, ensuring generalisability in real-life ap-

plications?

This question is addressed through the development and evaluation of machine learning

models trained on the NOR-TMD dataset, which includes real-life data collected from both

Android and iOS devices, across multiple participants, devices, and transport modes. The

emphasis is on achieving generalisable and robust classification performance across diverse

modes of transport.

Article II establishes the feasibility of transport mode detection using real-life sensor data

collected from regular travellers in Norway. It applies a multilayer perceptron (MLP) model to

classify a subset of transport modes based on Android data. Rather than focusing on

optimising classification accuracy, this article provides foundational insights into data

preprocessing and model performance that inform later work.

Article III directly targets the goal of maximising classification accuracy. Building on the

preprocessing insights from Article II, it applies extreme gradient boosting (XGBoost) to a

broader and more diverse dataset. This article expands the scope to include a wider range of

transportation modes and evaluates models trained separately for Android and iOS platforms.

The results demonstrate that high-accuracy transport mode detection is achievable using a

large and diverse dataset, in combination with carefully selected preprocessing techniques.

Collectively, these studies directly addresses RQ1 and demonstrate the feasibility of building

machine learning models that maintain high accuracy and generalisability across platforms,

users, and transport conditions.

RQ2: How can a standardised framework for feature evaluation and reduction sys-

tematically identify relevant features, ensuring consistency and enabling reliable

feature reduction across machine learning models?

This question is addressed through multiple rounds of feature evaluation and reduction

experiments, utilising a variety of machine learning models and different subsets of the
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NOR-TMD dataset.

Article II investigates several feature evaluation techniques and demonstrates that they

behave quite differently when applied to the same input, highlighting a lack of consistency in

current approaches. The results show that an effective trade-off between accuracy and feature

reduction is achieved by selecting the intersection of the top-performing features across

multiple evaluation methods.

Article III adopts a fundamentally different strategy by employing a feature ablation

approach, where individual features are systematically removed to assess their impact on

model performance. This method reveals that features can compensate for one another, which

affects the apparent importance of individual sensors. However, it proves difficult to reduce

feature dimensionality in a systematic and reliable manner using this approach. As a result, it

was not pursued in subsequent experiments.

Article IV builds upon the findings of Article II and introduces the EFR-TMD framework.

This standardised framework for feature evaluation and reduction integrates multiple feature

importance techniques to systematically rank features in a generic and model-agnostic way.

The results in Article IV demonstrate consistent performance across several algorithmic

approaches when feature reduction is guided by EFR-TMD.

These findings are further validated in Article V, where EFR-TMD is employed to

significantly reduce the number of features. The final model is then deployed and evaluated on

real devices operating onboard public transport vehicles, achieving satisfactory results in a

real-world context.

These investigations lead to the development and evaluation of the EFR-TMD framework,

which offers a consistent and reliable method for feature evaluation and reduction across

different models. This outcome addresses the core aims of RQ2.

RQ3: How can transport mode detection models be optimised for real-time, low-

latency inference while maintaining computational efficiency on mobile devices?

This question is addressed through both the development of the EFR-TMD framework and

real-world evaluation of optimised models deployed on mobile devices.
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Article IV demonstrates a direct correlation between systematic feature reduction using

EFR-TMD and decreased inference times across multiple machine learning algorithms. By

reducing input features, the models achieve significantly lower latency, meeting real-time

processing requirements essential for on-device deployment.

Article V validates the findings from Article IV by deploying and implementing a

platform-agnostic reduced-dimension model locally on Android and iOS smartphones. This

model is then evaluated in real-life contexts in public transport scenarios. Local deployment

eliminates network communication delays, further minimising latency and ensuring faster

inference. Additionally, energy consumption measurements on Android devices reveal only

marginal power usage increases during model operation, confirming that computational

efficiency is maintained in practical usage.

Together, these results confirm that transport mode detection models can be effectively

optimised for real-time, low-latency inference with minimal computational overhead, enabling

efficient, platform-agnostic on-device operation.

Collectively, these research questions are addressed through a series of targeted experiments

and frameworks that together form a unified approach to transport mode detection on mobile

devices. The work integrates robust machine learning methods, systematic feature selection,

and on-device optimisation to enable accurate, efficient, and platform-independent inference.

The key contributions of this thesis are outlined below.

1.4.2 Contributions

The research questions outlined above have been systematically addressed through a

combination of empirical studies, methodological frameworks, and real-world evaluations. This

thesis integrates cross-platform machine learning, consistent feature evaluation, and on-device

optimisation to overcome key limitations in existing transport mode detection approaches. The

outcomes of this work are reflected in the following key contributions:

NOR-TMD: A Comprehensive Dataset for Transport Mode Detection

Development of a large-scale dataset collected from over 100 participants in two Norwegian

cities. NOR-TMD includes sensor data from both Android and iOS devices and covers a wide

range of transport modes, addressing gaps in existing datasets and supporting generalisable,

21



cross-platform research.

Accurate and Generalisable Transport Mode Classification

Demonstration that XGBoost-based models trained on the NOR-TMD dataset can achieve

high classification performance across diverse transport modes and device platforms,

supporting real-world applicability.

EFR-TMD: A Framework for Feature Evaluation and Reduction

Introduction of an ensemble-based framework that combines multiple feature importance

techniques to identify the most relevant input features. EFR-TMD is model-agnostic and

demonstrates consistent performance across different machine learning algorithms and

platforms.

Lightweight, Platform-Agnostic On-Device Framework

Implementation and evaluation of a transport mode detection framework, capable of

classifying transportation modes on both Android and iOS devices. The framework achieves

low-latency inference with minimal energy overhead, supporting practical deployment in

real-world environments.

Together, these contributions form a comprehensive approach to efficient, accurate, and

user-independent transport mode detection on mobile devices. By addressing challenges

related to cross-platform compatibility, real-time inference, and systematic feature selection,

the findings bridge existing gaps in the literature and support practical deployment in

real-world public transportation scenarios. To contextualise the impact of this research, the

following section situates this research within the broader landscape of Smart Mobility and

Intelligent Transportation Systems (ITS).

1.5 Positioning of Research

This thesis addresses critical challenges identified in transport mode detection (TMD) research

and contributes to advancing Intelligent Transportation Systems (ITS) and Smart Mobility.

Smart Mobility is a broad field encompassing a variety of aspects such as sustainability, user

experience, and technological innovations [22], [23]. Within its technological domain,

Intelligent Transportation Systems (ITS) play a central role. As previously mentioned, this

research falls within the ITS component of Advanced Public Transportation Systems (APTS).
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Figure 1.2 illustrates the specific positioning of this research within the APTS component of

ITS. Automated fare collection (AFC) systems are a key component of APTS and can be

enhanced through the integration of transport mode detection. Within the field of transport

mode detection, this thesis specifically examines challenges related to predictive accuracy,

platform compatibility, feature importance, and computational efficiency, as highlighted in the

blue area of Figure 1.2.

Figure 1.2: Positioning of research.

Early in the research, the focus was on understanding and improving AFC systems,

culminating in Article I that thoroughly reviewed the state of the art in this domain. The

findings of this review highlighted significant challenges in AFC, particularly the need for

accurate and seamless in-vehicle presence detection to enable fully automated ticketing

solutions. This realisation led to a shift in research focus towards transport mode detection,

which can be employed to achieve in-vehicle presence detection and enhance AFC systems.

However, the specific challenges associated with transport mode detection were identified

through subsequent literature reviews conducted after this initial shift in focus. Therefore

Article I represents a significant contribution to the field while also serving as a stepping stone

for the later work presented in this thesis. This shift in focus towards transport mode

detection laid the groundwork for addressing the critical challenges in achieving seamless

automated fare collection.

This evolution of focus aligns with the principles of Design Science Research (DSR), a

paradigm that emphasises iterative problem-solving and the development of practical artefacts

to address real-life challenges. Within the DSR framework, flexibility is essential, allowing

researchers to adapt their focus as new insights emerge and a deeper understanding of the

problem domain is achieved. By following this approach, the research transitioned from
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analysing AFC systems to developing solutions for transport mode detection, a critical enabler

for automated fare collection. The identification of key challenges in transport mode detection

through consecutive literature reviews further refined the research direction, ensuring that the

solutions developed effectively addressed the most pressing issues in the field of transport

mode detection.

Building on insights from these reviews, this research addresses key challenges through the

development of innovative solutions. By focusing on transport mode detection, it directly

contributes to Smart Mobility and Intelligent Transport Systems (ITS), particularly within

advanced public transportation systems (APTS). Leveraging machine learning and mobile

computing, this research aims to achieve platform-agnostic, on-device transport mode

detection. A broad range of machine learning approaches is explored to achieve high

classification accuracy across diverse transport modalities using only inertial and ambient

sensor data from mobile phones. The importance of various feature sets is examined,

facilitating dimensionality reduction and enhancing model efficiency for mobile deployment.

Additionally, platform compatibility is investigated, leading to the development of a framework

capable of locally classifying transport modes across different platforms. By improving

computational efficiency and cross-platform compatibility, this research reduces both the

training and execution requirements of machine learning models, aligning with the

sustainability goals of Smart Mobility. Furthermore, accurate transport mode detection

supports Be-in/Be-out systems that operate without explicit user interaction, enhancing

accessibility and inclusivity. This aligns with the efficiency objectives of ITS by facilitating

faster boarding and alighting of public transportation vehicles.

1.6 Structure of the Thesis

This thesis is based on five articles, one of which are currently under review. Article I, which

reviews automated fare collection systems is included as a key result of the initial phase of the

research. It provides a detailed overview of current AFC solutions and their enabling

technologies, laying the groundwork for the subsequent focus on transport mode detection as

an enabler of advanced AFC systems.

The next chapter presents an overview of related work on transport mode detection,

emphasising various approaches concerning data foundations, algorithms, and data processing

strategies used to tackle challenges in this field. Chapter 3 outlines the research methodology
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used to address the research questions posed in Chapter 1, with a focus on the theoretical

framework and quantitative methods for data collection, processing, and analysis. Chapter 4

details the findings from a series of experiments and research activities conducted during the

study. This includes an in-depth presentation of the NOR-TMD dataset, the development of a

generalisable feature importance framework for TMD, EFR-TMD, and the creation of a

platform-agnostic framework for local TMD. Furthermore, the chapter examines the

performance outcomes of various technical approaches investigated during the research,

alongside the results of real-life evaluations. In Chapter 5, the results are discussed in relation

to prior research, demonstrating their contributions to real-time mobility analytics, intelligent

transportation solutions, and sustainable urban mobility. Finally, Chapter 6 concludes this

thesis by answering the research questions, summarising key contributions and limitations,

highlighting their theoretical and practical implications, and proposing directions for future

work.
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Chapter 2

Related Work

This research seeks to advance the fields of Intelligent Transportation Systems (ITS) and

Smart Mobility by addressing the pressing challenges posed by rapid urbanisation and the

increasing demand for efficient, inclusive, and sustainable public transportation solutions. The

motivation stems from the need to enhance transportation systems through innovative,

data-driven approaches that reduce congestion, minimise environmental impact, and improve

user experiences. A central focus of this thesis lies in leveraging machine learning and

smartphone sensor data to enable accurate transport mode detection (TMD). By exploring

how machine learning and sensor technologies can support intelligent public transportation

systems, this research aligns with broader goals of Intelligent Transportation Systems (ITS)

and Smart Mobility, including the development of user-centred, privacy-preserving solutions

that operate locally on mobile devices. Such advancements aim to empower individuals while

contributing to sustainable and integrated mobility systems.

To position this research within the wider academic context, this chapter reviews the state of

the art in machine learning-based TMD, examining algorithms, preprocessing strategies,

evaluation techniques, and data resources. The review highlights existing approaches and

identifies key gaps and challenges in current research, particularly with respect to accuracy,

standardisation, and computational efficiency. By examining the strengths and limitations of

prior work, this chapter sets the stage for understanding how this research builds upon and

extends existing efforts to advance the field. Before diving into the technical details of prior

studies, this chapter begins by providing an overview of the diverse application areas where

transport mode detection play a pivotal role in enhancing mobility and addressing urban

transportation challenges.
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2.1 Overview of Applications of Transport Mode Detection

At a high level, the field of transport mode detection (TMD) can be categorised based on the

diverse use cases it addresses, which are shaped by the distinct goals and practical

requirements of various research domains. The primary fields where TMD finds application

include location-based services, transportation science, and human geography [13].

In location-based services, the focus is on real-time identification of transportation modes,

which is particularly useful in automated fare collection (AFC) systems. Notably, TMD is

integral to the Be-In/Be-Out (BIBO) paradigm, where ticketing is fully automated without

requiring explicit user action. Researchers have developed various solutions incorporating

TMD as a component into AFC systems to detect whether a traveller is currently within a

specific mode or vehicle [14], [33], [37]. Traditionally, this presence detection has relied on

external hardware, such as reference devices, correlating data between the traveller’s device

and that of the reference device in order to place a traveller within the given vehicle [55], [81].

However, the integration of transport mode detection into AFC systems reduces the reliance

on external infrastructure, thereby lowering installation and maintenance costs [14].

Furthermore, real-time contextual information derived from transport mode detection can be

used for targeted advertising [77], [82], [83], such as offering discounts on gasoline to drivers

[84]. The contextual information derived from transport mode detection also supports traffic

congestion estimation, alternative route suggestions [83], and personalised assistance in

adjusting schedules or meeting agendas based on estimated travel times for specific

transportation modes [85].

In transportation science, the emphasis is on analysing and measuring daily travel patterns of

individuals or groups over historical time frames [13]. The most common application of

transport mode detection in this field is the automation of travel surveys [82], [86]–[89].

Detailed travel information is critical for understanding individual travel behaviour and

supporting transportation planning decisions [90]. Traditional methods for collecting this kind

of data, such as manual questionnaires and telephone surveys, often result in under-reporting

of short trips and inaccurate or incomplete data [86], [91]. Transport mode detection offers

significant potential to mitigate these limitations by minimising biased responses, reducing

instances of non-responses, and improving the accuracy of time reporting [89] by automatically

estimating travel information, without the need for manual questionnaires or telephone

27



surveys. Insights into transportation modes provide valuable information for public transport

operators aiming to encourage shifts from private cars to public transit. Similarly, transport

providers can analyse urban mobility trends to optimise services [76]. It also supports the

estimation of origins and destinations (O-D) to quantify transport demand between city

regions, enabling evaluation and planning of traffic, identification of optimal new transport

routes, and analysis of trip purposes and weekly travel patterns [46], [92], [93]. Additionally,

transport mode detection is increasingly used to estimate environmental impacts, including

carbon footprints and emissions associated with different transportation modes, reflecting its

growing importance in addressing environmental concerns [82], [94].

In the field of human geography, transport mode detection (TMD) is instrumental in enriching

trajectories by incorporating domain-specific semantic information [13]. TMD enables the

segmentation of trajectories into meaningful parts, distinguishing between stationary and

mobile segments. This segmentation facilitates further semantic enrichment, such as

identifying activities associated with points of interest, changes in travel direction, and

temporal movement patterns [13]. By analysing transitions between stationary and mobile

states, human geographers can study spatial behaviour and decision-making processes related

to movement. Combined with auxiliary datasets, transport mode detection can support human

geography research in diverse contexts, including migration studies [13] and urban planning

[95]. Beyond location-based services, transportation science, and human geography, transport

mode detection also has applications in health monitoring [45], [82], [96] and by determining

transportation modes, it can estimate daily activity patterns and caloric expenditure,

providing insights into individuals’ physical activity levels [82], [96].

Having briefly explored the diverse application areas of transport mode detection, attention is

now turned to the different approaches that form the foundation of these applications,

examining how different techniques are employed to achieve effective transport mode detection.

2.2 Approaches for Transport Mode Detection

Achieving accurate transport mode detection (TMD) primarily relies on three methodological

approaches: network-based, location-based, and sensor-based. Each of these approaches

leverages distinct data sources and analytical techniques, offering unique advantages and

challenges in different application contexts. In addition, hybrid methods have emerged,

integrating data sources and analytical techniques from all three approaches to enhance
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detection accuracy and contextual adaptability. Figure 2.1 presents an overview of the three

primary approaches to transport mode detection and demonstrates how hybrid methods

combine their respective data sources. These approaches have evolved to address the diverse

requirements of TMD applications, ranging from real-time responsiveness to historical analysis

and semantic trajectory enrichment. By utilising various data sources, such as network

infrastructure, geographical positioning, sensor readings, or combinations thereof,

network-based, location-based, sensor-based, and hybrid methods cater to the specific goals of

different research domains. In the following subsections, each approach is explored in detail,

highlighting their key characteristics, advantages, and limitations.

Figure 2.1: Overview of Approaches for Transport Mode Detection

2.2.1 Network-Based

Network-based approaches utilise coarse-grained network data such as call detail records

(CDR), cellular data or base station information [71], [76], [96]–[104]. CDR typically includes

the numbers of the caller and callee, start time, duration, the exchange identifier and similar

data points. Additionally, information about the cell tower the device is connected to and an

approximate location is also provided [97]. This approximate location is what is used to

estimate trips. In order to estimate whether a traveller is using private or public

transportation, the travel time between each origin and destination can be correlated with the

average travel time provided by solutions such as Google Maps. Trips with a travel time close

to the average travel time using public transportation are then likely to be trips conducted

onboard public transportation. This works equivalent when estimating private transportation

[97]. CDR data is cheap, as telecom equipment already generates this data when users are

making phone calls and send/receive messages. CDR data can also be used to separate road
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and rail travel by labelling data that comes from base stations and equipment known to be

situated in the underground or train stations [71]. A problem with this approach is that it

requires people to make frequent calls or send/receive messages [97]. While people might be

more prone to send messages and call during public transportation, they might be less likely to

do so when driving private vehicles, which makes it difficult for this approach to establish

granular modes [71]. That being said, given enough data points it is possible to detect more

granular modes such as train, subway and walking by extracting features representing motion

based on the location data within the records.

By mapping the network data onto nearby roads, using data from geographic information

systems (GIS), some researchers have been able to separate the modes car and bus [103],

however modes such as bike and tram are still challenging in urban areas [99]. Although the

use of coarse-grained network data is mainly useful when investigating travel patterns in

historical contexts, some researchers have proposed a solution for real-time network-based

transport mode detection by using the received signal strength (RSS) and the cell identifier

(CID) [104], however only to distinguish between stationary, walking and motorised travel. In

order to increase the number of possible modes to classify, Cardoso, Madureira, and Pereira

[96] employed data from wireless access points (WAP) to classify modes of transportation.

This approach establish a rough location estimate based on the WAP data, which in turn is

used to train a classifier, outperforming existing off-the-shelf activity recognition libraries, such

as Google Activity Recognition API and Intel Activity Recognition [96]. While network-based

approaches demonstrate potential, they typically support fewer transport modes and exhibit

lower accuracy compared to location- and sensor-based approaches. Additionally,

network-based methods often depend on travellers actively using their devices or being in close

proximity to wireless access points. To detect granular modes of transportation in real-time,

with high accuracy to enable solutions such as AFC and real-time information systems,

fine-grained data such as GPS coordinates or smartphone sensor data is needed.

2.2.2 Location-based

This brings us to location-based solutions, which leverages Global Positioning System (GPS)

data, either by itself or in combination with data from Geographical Information Systems

(GIS) to achieve accurate detection of transportation modes [77], [83], [87], [105]–[118]. As

with all research and development of machine learning technology, large amounts of GPS data

is required to achieve accurate location-based solutions. In the early days of smartphones,
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assisted GPS (AGPS) service providers imposed limitations on GPS sampling frequencies of

mobile devices, and because of this many early works investigating the use of GPS for

transport mode detection employed separate GPS loggers to record coordinates across various

transportation modes using different sampling frequencies [105]. When employing GPS data to

estimate the mode of transportation, researchers mainly rely on the speed and acceleration,

which are derived from the location data [119]. In addition, some researchers have developed

new features such as bearing rate, change in heading, and distance travelled calculated from

the GPS coordinates [53], [106], [107], [109]. From these features, speed and acceleration has

been deemed the most useful features to infer the mode of transportation [105], [106] and are

present in most works concerning location-based TMD solutions. From speed and acceleration,

new features can also be extracted by applying statistical functions, such as calculating the

average or the percentiles of speed, which further improves classification accuracy [107].

As smartphones became more widely adopted, researchers started to use the built-in GPS

module of mobile devices, and instead of having participants carrying dedicated GPS loggers,

they could instead develop and install custom mobile applications that continuously collected

GPS data in order to amass larger datasets for training and validating their research [107],

[109]. This enabled researchers to maintain a better control over the process of labelling the

data as well as providing flexibility in terms of sampling rates, where higher sampling

frequencies can lead to more accurate solutions [105]. Past research efforts aimed at achieving

location-based TMD solutions using only GPS data have managed to increase the granularity

of modes, compared to network-based approaches, and have managed to classify when

travellers are walking, riding bikes or e-bikes, taking the bus, driving a car or using various rail

transportation such as metro, tram or train [107]–[109], [120]. However, GPS can be unreliable

when travelling underground or in dense urban canyons since GPS require a clear view of the

sky in order to establish accurate locations [60], [77], [121].

In order to address these limitations authors have incorporated GIS data, which includes data

on road networks, subway networks, train networks, bus stops, and stations [105], [115], [122].

Studies have shown that incorporating GIS data can enhance the classification accuracy

significantly, compared to using GPS data alone [77], [115], [122]. By leveraging GIS data it is

possible to achieve route-specific classifications, where the possible vehicles that frequent a

specific route is taken into account [105]. Route-specific classification schemes have exhibited

better classification accuracies as opposed to general mode classification [105], however systems
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incorporating GIS, are more complex and less robust to changes in the urban environments,

such as changes in transportation infrastructure (e.g., new routes and roads).

While incorporating GIS data can enhance the accuracy of location-based approaches [77],

[115], high classification performance can also be achieved using only GPS data [107]. Despite

their success, location-based methods face several limitations. First, GPS requires an

unobstructed view of the sky, making it unreliable for underground travel or in dense urban

environments such as urban canyons [60], [77], [121]. Second, GPS is highly energy-intensive,

posing challenges for resource-constrained devices like smartphones [60], [77], [123]. Third, the

use of GPS trajectory data raises significant privacy concerns. GPS data can be

cross-referenced with external datasets to identify individuals, even with a small number of

unique location points. This raw data can reveal sensitive information, such as home and work

locations, personal movement patterns, and lifestyles. Moreover, frequent visits to specific

locations, such as religious or political venues, can expose personal beliefs and affiliations [66].

Given these limitations, many researchers have shifted their focus to sensor-based approaches,

which leverage the rich data available from smartphone sensors to address challenges related to

GPS reliability, energy consumption, and privacy concerns.

2.2.3 Sensor-based

In order to combat the limitations of GPS-based methods, sensor-based approaches harness

smartphone sensor data to improve accuracy and overcome challenges associated with energy

consumption and privacy. Sensor-based approaches differentiates from location-based

approaches in that they employ inertial and ambient sensor data generated by the hardware of

mobile devices. Mobile sensor data is converted into transportation information by analysing

unique signatures within each travel mode such as rolling, waving, vibration, and acceleration

patterns [124]. This data is then used to train machine learning algorithms to classify the

mode of transportation, similar to that of location-based solutions. Within the realm of

sensor-based solutions, acceleration is the most widely applied feature for sensor-based

transport mode detection solutions, but rather than calculating an approximate acceleration or

speed, from potentially unreliable GPS coordinates, sensor-based approaches instead sample

the built-in accelerometer in mobile devices [60], [79], [125], [126]. By employing only data

from the accelerometer, researchers have been able to achieve promising results, classifying

modes such as walking, riding a bike, riding the bus, metro, or train, and driving a car or

motorcycle with decent accuracy [60], [79], [121], [125]–[127]. However, while accelerometer
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data is less intrusive than location data, it can still present privacy concerns, as it may reveal

insights into a user’s movements, identity, demographics, and activities, especially when

combined with other data sources [67].

As mobile devices are becoming more advanced, new smartphones now have a plethora of

ambient and inertial sensors, such as magnetometers and gyroscopes, which can be leveraged

to improve the classification accuracy of TMD solutions. The gyroscope presents the angular

velocity of rotation along three axes [128] and can provide other dimensions of patterns related

to different modes of transportation. For instance, the gyroscope can be leveraged to find

unique signatures in how the vehicles vibrates [129], leading to the possibility of discerning

when a vehicle has stopped due to congestion or red lights, as opposed to having parked or the

traveller has disembarked. Similarly, the magnetometer measures the magnetic field around

the device across three axes [128] and is altered by the vehicle’s structure, creating a distinct

signal that can be used to identify a person’s mode of transportation [85]. Different

combinations of accelerometers, magnetometers and gyroscopes have been widely deployed in

different algorithmic approaches with solutions exhibiting accuracies over 90% [85], [130]–[134].

Although, somewhat less applied in research, the barometer is also an important sensor in the

context of TMD solutions. As opposed to the accelerometer, magnetometer, and gyroscope,

the barometer is independent of phone position and orientation, and was originally included in

mobile devices to reduce the delay of the GPS fix by providing altitude [135]. However, the

barometer is sensitive enough to detect height differences when moving along a road, even

though the differences are too small to observe by the naked eye, making it suitable for

generating data consistent with different modes of transportation, while simultaneously using

very little energy [135]. The barometer have been used in combinations with other sensors,

such as accelerometer, gyroscope, and magnetic field, in order to further enhance solutions for

sensor-based TMD solutions, exhibiting accuracies well beyond 90%, highlighting the

importance of this sensor [136]–[138].

Building on this, researchers have applied every standardised sensor that exists on modern

mobile devices, including fused sensors such as the different rotation vectors, linear

acceleration, and gravity [74], [84], [136], [139], [140]. Going beyond that of ambient and

inertial sensors, some researchers have investigated the applicability of sampling sound from

mobile devices in order to classify the mode of transportation [127], [140], [141]. Sound is a key

modality accessible on all smartphones via the microphone, and can be more effective for
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classifying vehicular modes compared to motion sensors [141]. This is because each vehicle

typically produces a distinct sound, making it easier to distinguish vehicles that exhibits

similar sound patterns [141]. Although sound can serve as a valuable and effective data source

for developing solutions for transportation mode classification, it introduces significant privacy

concerns that must be carefully addressed [127], [140], [141]. In order to address privacy

concerns associated with using sound, researchers have proposed techniques such as selectively

sampling audio with intermittent muting, ensuring the captured sound remains

incomprehensible while still achieving comparable performance for transportation mode

detection [127]. More broadly, sensor-based approaches have shown great promise in

transportation mode detection. However, to further improve performance, some researchers

have explored combining methods. Hybrid approaches leverage the strengths of multiple

methodologies to enhance the accuracy, robustness, and reliability of transportation mode

classification.

2.2.4 Hybrid Approaches

Many approaches combining both location-based and sensor-based approaches, employ the

combination of GPS and acceleration data [56], [89], [142], [143]. Accelerometer and GPS data

complement each other because they capture different aspects of movement. When

accelerometer outputs appear similar across modes of transport, the GPS speed can help

distinguish them, and vice versa; when speed data is similar, differences in acceleration

patterns can provide clarity [142]. Reddy, Burke, Estrin, et al. [142] states that removing

either of the two features caused a significant accuracy drop in their experiment, highlighting

the necessity for combining the two approaches. Building on this approach, researchers have

proposed using two different classifiers, to separate when travellers are stationary from when

they are moving, within modes such as driving, walking, or riding a bike [129]. Shah, Wan, Lu,

et al. [144] proposed a system that utilise multiple classifiers to enhance this methodology. At

the initial stage, a classifier based on acceleration data is employed to differentiate less granular

transportation modes, such as stationary and motorised states. Upon detecting vehicular

motion, a higher-level classifier, incorporating GPS and GIS data, is applied to classify more

specific modes of transportation with greater precision. An important aspect is being able to

separate stationary and motion within different modes because even though travellers might be

situated within a vehicle, if the vehicle is stationary over a longer period it can be difficult to

classify the correct mode, due to the dependency on speed and acceleration. However,

separating stationary and moving within different modes is difficult and the two classes are
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easily confused when the solution is based on only location data and accelerometer data [129].

Further advancing hybrid approaches, researchers have proposed to combine GPS and

acceleration with data from the magnetometer [64], [94], [145], [146], as the magnetic field is

particularly useful when classifying modes such as tram and train which cause significant

magnetic disturbances [94]. From there, a plethora of sensor combinations together with

location data, such as GPS and GIS, have been assessed, including gyroscopic data, rotation

vectors and sound [14], [66], [141], [147]. Many hybrid approaches successfully leverage the

complementary strengths of location-based and sensor-based methods to achieve higher

accuracy and granularity in transportation mode detection. By integrating diverse data

sources and employing multiple classifiers, hybrid methods address limitations inherent to

individual approaches, such as distinguishing stationary states or classifying similar modes like

tram and train. That being said, by employing location data, hybrid solutions still face the

same challenges of energy consumption and privacy as location-based approaches.

2.3 Machine Learning in Transport Mode Detection

Machine learning has become a cornerstone of transport mode detection (TMD), offering

better generalisation and improved discrimination when classifying transportation modes,

compared to traditional approaches [54]. Both supervised and unsupervised machine learning

methods have been explored to model patterns in sensor data, each suited to specific contexts

and requirements. However, the success of the different methods relies heavily on effective

preprocessing to prepare the raw data and the evaluation frameworks used to assess model

performance. This section reviews the key machine learning approaches applied to TMD, the

processing techniques used to optimise data for analysis, and the methods for feature selection,

extraction, and importance.

2.3.1 Algorithmic Approaches

Most machine learning approaches for transport mode detection employs a supervised

approach. Supervised learning techniques rely on labelled data to learn patterns and

relationships that enable the classification of past or current events. During the training

process, supervised algorithms develop an inferred function that maps input data to the

corresponding output values. With sufficient training, the model becomes capable of

accurately predicting outcomes for new, unseen data. Supervised learning algorithms

iteratively compare the predicted outputs with the actual labels, identifying errors and
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adjusting the model to minimise discrepancies. This process ensures continuous refinement and

improved accuracy in forecasting tasks [148].

Supervised learning is widely applied within the field of TMD and a large variety of supervised

algorithms have been utilised towards achieving accurate TMD solutions. Traditional

algorithms such as Bayesian inference, k-nearest neighbours (KNN), support vector machines

(SVM), decision trees, and random forests have been widely utilised [56], [62], [64], [71], [82],

[96], [119], [143], [149]. Decision trees are particularly notable for their interpretability, as they

mimic the human decision-making process and can be easily visualised. However, large

decision trees often suffer from overfitting [94], a common challenge in supervised learning

where the model fails to generalise to unseen data [150]. To address this limitation, random

forests extend the decision tree concept by building an ensemble of multiple trees, each trained

on a randomly selected subset of features. The final prediction is determined by a majority

vote across all trees, improving robustness and reducing overfitting [120]. Advanced and

emerging approaches have further expanded foundational methods, including techniques like

gradient boosting [57], [80] and stacked learning [74]. Boosting is a technique used to reduce

bias and variance [148] and forms the basis for algorithms such as adaptive boosting

(AdaBoost) [89] and extreme gradient boosting (XGBoost) [151] which also have been utilised

in the context of TMD with promising results.

Traditional algorithms often struggle with high-dimensional data and tend to be sensitive to

irrelevant features. In contrast, neural networks present a robust alternative, overcoming many

limitations of conventional methods, which typically rely on strict assumptions like normality,

linearity, and variable independence [152]. Multilayer Perceptron (MLP), which is a

feed-forward neural network (DFNN), have been employed in this context [37]. However,

DFNNs cannot retain information over time, but instead analyse each sample independently.

This limitation has led to the exploration of neural network architectures capable of processing

sequential data, such as gated recurrent units (GRU) and long short-term memory (LSTM)

[75], [138], [153]. Additionally, some researchers have utilised convolutional neural networks

(CNNs) in the context of TMD [117], [154]. Although CNNs are predominantly used in image

and video recognition due to their ability to extract hierarchical spatial features, their

architectural design limiting connections to local receptive fields also reduces the risk of

overfitting [155], making CNNs a viable option for various classification tasks. In the context of

both human activity recognition (HAR) and TMD, combining LSTM and CNN architectures
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has also been explored to leverage both temporal and spatial feature extraction capabilities,

showing potential for enhanced performance in sequential classification tasks [137], [153], [156].

While the majority of studies employ supervised learning approaches using collected or

pre-existing datasets, some researchers have proposed semi-supervised or unsupervised

methods for classifying modes of transportation. In contrast to supervised methods,

unsupervised methods do not require labelled data. Instead, they aim to extract inferences

from the input data, modelling the hidden or underlying structures and distributions within it

[157]. Researchers have employed different forms of clustering in order to estimate the mode of

transportation [99], [158]. Another commonly used unsupervised approach is hidden Markov

models (HMM) [86], [149], [159].

Supervised and unsupervised approaches have also been combined, forming semi-supervised

approaches [111], [116]. These approaches consist of multiple parts where the unsupervised

component captures general patterns and structures in the data from both labelled and

unlabelled datasets, enriching the feature representations, while the supervised component

leverages the labelled data to perform precise classification tasks. Estimating transportation

modes based on GPS data, Dabiri, Lu, Heaslip, et al. [111] utilised a combination of CNN and

a convolutional-deconvolutional autoencoder, which is an unsupervised learning technique that

aims to learn an efficient latent representation by reconstructing the input at the output layer.

While this approach reduce the need for labelled data, the approach struggles with

discriminating between similar modes, especially when the labelled data for the different

modes is limited. On the other hand, Zhang, Zhu, Markos, et al. [116] combined

pseudolabelling with an ensemble of neural networks, within a federated learning framework in

order to reduce the need for labelled data, while simultaneously preserving user privacy.

While numerous studies examine the strengths and weaknesses of various machine learning

algorithms [148], [152], [155], [160]–[163], direct comparisons remain challenging due to the lack

of standardised benchmark datasets [80]. The performance of any given algorithm is highly

dependent on the data it is trained on, making it difficult to draw definitive conclusions about

the superiority of one approach over another. Given this variability, the effectiveness of a

machine learning model is not solely determined by the choice of algorithm but also by the

quality and structure of the input data. Proper preprocessing, including segmentation,

transformation, and feature extraction, is essential to maximise model reliability and efficiency.
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2.3.2 Data Preparation and Segmentation

In practice, raw data must be carefully prepared to unlock the full potential of machine

learning algorithms. While a wide range of algorithms is available, an even greater variability

exists in the techniques used for data preparation and feature extraction for training machine

learning models. One well-established approach, the Activity Recognition Chain (ARC)

framework [59], outlines the steps required to infer user activity from inertial sensors in human

activity recognition. This framework highlights the importance of segmentation and

recommends a sliding window approach for segmenting time-series data. Although ARC is

primarily focused on activity recognition, sliding windows are also widely used in transport

mode detection preprocessing [60], [96], [164], [165]. Window functions consist of a size and

overlap, and by continuously stepping through the data, sliding windows provide a sequential

structure that reveals transient trends and enhances pattern detection accuracy. The size of

sliding windows typically ranges from 1 to 60 seconds [14], [73], [85], [126], though longer

windows can also be effective [73], [98], [135]. However, there is a trade-off between finer

granularity with increased window density and the computational demands of shorter windows

[73]. Some researchers have also proposed dynamic sampling windows that can cover an entire

travel period and automatically adjust based on the individual’s activities [124].

When processing data from three-dimensional inertial sensors, many studies compute the

magnitude of the three axes to remove directional dependencies before aggregating segments

[96], [143], [164]. However, other studies choose to retain directional values [14], as they

provide more nuanced information. The window size is also influenced by the initial sampling

frequency since higher sampling frequencies allow for more data points within each window.

Sampling frequencies used in previous studies vary widely, ranging from 1/90 Hz [99] to 100 Hz

[85], [89]. Research involving network or location data in historical contexts typically employs

much lower sampling frequencies (less than 1 Hz) [99] compared to studies focusing on

real-time sensor data [82], [85], [89], [99], [126], [133], [146], [147]. The sampling frequency

significantly affects both the accuracy and efficiency of the methodology. While lower

frequencies reduce accuracy, they also decrease computation time, demonstrating a trade-off

that must be carefully considered [166]. To ensure a uniform sampling frequency or modify the

initial frequency, interpolation techniques have been employed [14], [125], [135].

When extracting features, both time-domain and frequency-domain features are widely utilised

in transport mode detection research. Time-domain features capture the signal’s
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characteristics as it varies over time, while frequency-domain features can offer additional

insights but are considered more computationally demanding due to the required

transformation step [62]. Transforming data into the frequency domain typically involves

applying a variant of the Fourier transform, most commonly Fast Fourier Transform (FFT)

[79], [125], [127], Discrete Fourier Transform (DFT) [143], or Short-Time Fourier Transform

(STFT) [73], [141], [147]. Although frequency-domain transformations are frequently employed

in transport mode detection, many researchers prefer using time-domain features [14] or

combining both domains [60], [70], [102], [104], [167]. Once the raw data is converted to the

desired domain and segmented into windows, the values within each segment must be

aggregated into representative features to ensure that each window provides a concise input for

model training. Various statistical functions have been used for data aggregation, including

variance [164], mean [64], [76], [96], [119], median [96], minimum and maximum values [64],

[96], [119], kurtosis [96], standard deviation [64], percentiles [168], quartiles [165], and

interquartile range [57].

While the aforementioned preprocessing steps establish the foundation for most prior research

efforts, many researchers face challenges with imbalanced data, where the distribution of

samples across different classes is uneven. This can lead to classifier bias toward majority

classes, reducing predictive accuracy for under-represented modes [169]. This issue, is

commonly mitigated using the Synthetic Minority Over-sampling Technique (SMOTE) [170],

which generates synthetic data for minority classes [73], [85], [118], [129]. Although less

common, some studies have also explored generative adversarial networks (GANs) to address

class imbalance in transport mode detection, yielding promising results [112]. The impact of

preprocessing becomes evident during model evaluation, where the quality of prepared data

directly affects accuracy, robustness, and reliability. However, as datasets grow in complexity,

high-dimensional feature spaces can introduce redundancy and computational overhead. To

address this, researchers employ dimensionality reduction techniques to refine feature sets,

improving both efficiency and classification performance.

2.3.3 Dimensionality Reduction and Feature Importance Estimation

Feature selection and feature extraction are fundamental techniques for dimensionality

reduction in machine learning. Feature selection involves identifying and retaining only the

most relevant input dimensions for solving a given problem, while feature extraction

transforms the input space onto a lower-dimensional subspace that preserves the essential
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information [171]. Feature selection and extraction, either used independently or in

combination, enhance various aspects of machine learning models, including predictive

performance, visualisation, and interpretability [172]. Features are often categorised as

relevant, irrelevant, or redundant [172], with redundant and irrelevant features negatively

impacting computational efficiency and model accuracy. Feature selection provides several

advantages: reducing dimensionality, limiting storage requirements, improving algorithmic

efficiency, eliminating redundant or noisy data, enhancing predictive accuracy, and offering

insights into the data-generating process [173]–[175].

Feature selection can broadly be classified into three categories; filter, wrapper, and hybrid

methods [172]. Filters apply statistical techniques to select features independently of the

learning algorithm, making them computationally efficient but less reliable in classification

tasks. Wrappers, on the other hand, optimise feature selection for a specific classifier by

evaluating different feature subsets, leading to improved classification performance at the cost

of increased computational expense, particularly for high-dimensional datasets. Hybrid

methods integrate statistical tests with classifier-based evaluations, combining the strengths of

filters and wrappers [172]. Among wrapper methods, sequential forward selection (SFS) is

effective when the optimal subset consists of a small number of features, but struggles to

remove features that become obsolete after additional selections. Sequential backward

elimination (SBE), which removes features iteratively, also lacks the ability to reassess

previously discarded features [172].

Handling high-dimensional data remains a challenge due to increased computational costs and

memory usage [176]. Empirical studies suggest that redundant features degrade both speed

and accuracy, reinforcing the need for feature selection methods that simultaneously address

redundancy and irrelevance [172]. Principal Component Analysis (PCA) is among the most

widely used feature extraction techniques [172]. As a non-parametric method, PCA reduces

redundancy and noise while extracting the most relevant information from a dataset. However,

its reliance on linear relationships among variables and the necessity for numerically scaled

data limit its applicability [172]. Additionally, PCA’s effectiveness varies with different data

types [176], and does not always enhance classification performance [153]. A study by Subasi,

Ghosh, Manzano, et al. [177] compared various low-cost feature reduction algorithms and

found that ANOVA and PCA outperformed Gaussian and Sparse Random Projections in

improving classification accuracy. Despite these advances, no universally accepted method for
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feature selection or importance has been established [172].

Feature importance plays a crucial role in both feature selection and model interpretability but

remains highly unreliable [178]. Different machine learning models and importance techniques

often yield varying importance rankings for the same dataset, complicating interpretability and

trust in model outputs [175]. Moreover, there is no consensus on the most appropriate metric

for evaluating feature contributions, which poses a significant challenge in safety-critical

applications where explainability is paramount [179]. Model-specific techniques, such as

impurity-based measures in tree-based models, often fail to generalise across different learning

algorithms. In contrast, model-agnostic approaches, including SHapley Additive exPlanations

(SHAP) and permutation importance (PI), attempt to provide more general estimates but still

produce varying results depending on the dataset and learning model [178]. The reliability of

feature importance estimates can be compromised if only a single method is used [179].

To address this, Rengasamy, Rothwell, and Figueredo [179] introduced an ensemble framework

that aggregates results from multiple machine learning models and feature importance

techniques, demonstrating that combining outputs improves robustness over individual

methods. Their approach employs fusion metrics such as mean, median, majority voting, and

rank correlation, with majority voting producing the most stable results across multiple

datasets. Notably, their findings indicate that noise in datasets does not affect the ability of

the ensemble method to accurately assess feature importance. Expanding on this approach,

Rengasamy, Mase, Kumar, et al. [178] developed the FEFI (Fuzzy Ensemble Feature

Importance) framework, designed to address the uncertainty and unreliability of existing

post-processing feature importance techniques while mitigating ethical concerns surrounding

misleading output interpretations. This framework integrates fuzzy logic and incorporates the

distribution of feature importance values to establish flexible boundaries, making the results

more interpretable and accessible to non-experts. However, their study relied on synthetic

data, and the authors emphasise the need for further evaluations using real-life datasets to

assess performance in practical applications [178].

Feature reduction is increasingly recognised as a key factor in managing the growing

computational and energy demands of machine learning models [180]. Reducing the number of

features leads to a significant decrease in model size [177], [181] and has been shown to reduce

energy consumption and carbon emissions by 23–99% while maintaining accuracy [174].
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Hestness, Narang, Ardalani, et al. [181] demonstrated that model size scales sublinearly with

data size, reinforcing the importance of feature selection for computational efficiency. Feature

reduction not only eliminates unnecessary features but can also enhance classification

performance [153], [172]. However, the estimation of feature importance remains unreliable

[178]. Different machine learning models, importance techniques, and data subsets, generate

disparate importance coefficients, often with varying magnitudes for the same features [175],

[179]. Additionally, there is no consensus on the optimal metric for feature importance

calculation, highlighting the need for more reliable and accurate estimation methods [179].

This challenge extends to the selection of training data, as the quality and representativeness

of datasets play a crucial role in shaping model performance.

2.4 Publicly Available Datasets

Datasets not only provide the foundational data for model development but also define the

scope, generalisability, and limitations of transport mode detection (TMD) systems. A key

challenge in this field is the lack of benchmark datasets, which hinders the ability to compare

results across studies [80]. Although some publicly available datasets exist, they each suffer

from specific limitations. In this section, an overview of publicly available datasets commonly

used in TMD research is provided, focusing on their characteristics, strengths, and constraints.

Many researchers develop custom applications and recruit participants to collect sensor and

location data for experimentation [94], [107], [109]. However, a significant number of studies

utilise publicly available datasets, such as Microsoft’s Geolife dataset for location-based

approaches [182]. This dataset comprises extensive location data spanning multiple

transportation modes, users, and geographical locations. While smartphone sensor-based

datasets are also available, they face notable limitations.

To the best of available knowledge, only four publicly accessible datasets have been

systematically collected across various transportation modes: the HTC Transport Mode

Dataset [123], the Sussex-Huawei Locomotion (SHL) Dataset [183], the US-TMD Dataset [72],

and the Collecty Dataset [184]. The HTC Transport Mode Dataset contains 8,311 hours of

data collected from 150 students and 74 employees and interns, totalling 100 gigabytes (GB)

[123]. However, the data was collected through only two predefined routes, limiting its

geographic diversity and generalisability. Although the dataset is extensive in terms of

participant count, data size, and transportation modes, it is limited by the lack of sensor and

device diversity.
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Table 2.1: Overview over publicly available sensor-based datasets: DL = Placement
of the device during data collection. N.UD = Number of unique devices. N.UP = Number of
unique participants.

Dataset Modes Sensors DL N.UD N.UP Hours

HTC
[123]

Still,
Walk,
Run,

Bike, Mo-
torcycle,
Car, Bus,
Metro,
Train

Accelerometer,
Magnetometer,

Gyroscope

N/A 1 224 8311h

SHL [183] Still,
Walk,
Run,
Bike,

Car, Bus,
Metro,
Train

Accelerometer,
Magnetometer,
Gyroscope,
Orientation,

Gravity, Linear
acceleration,
Ambient
pressure,

Google’s activity
recognition API,
Ambient light,

Battery level and
temperature,

Satellite
reception, WiFi
reception, Mobile

phone cell
reception, GPS,

Audio

Hand,
Hips,
Torso,

Backpack

1 3 2812h

US-TMD
[72]

Still,
Walk,

Car, Bus,
Train

Accelerometer,
Magnetometer,
Gyroscope,

Gravity, Ambient
light, Ambient
pressure, Audio,

Proximity

N/A 11 13 31h

Collecty
[184]

Walk,
Run,
Bike,

Car, Bus,
Train,
Tram,

e-scooter

Accelereometer,
Magnetometer,
Gyroscope,

Linear
acceleration

N/A Unknown 15 242h
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In contrast, the SHL Dataset was collected over seven months by only three participants,

resulting in 950 GB of data across 2,812 hours [183]. The SHL dataset incorporates data from

15 different smartphone sensors but was collected using a single device type, which may

restrict its generalisability despite its larger scale and sensor variety compared to the HTC

dataset. The US-TMD Dataset offers data from 13 participants using 11 different devices,

totalling approximately 32 hours and 3 GB [72]. While smaller in scale than the HTC and

SHL datasets, its inclusion of multiple device types enhances diversity. Similarly, the Collecty

Dataset consists of data collected from 15 users over five months, amounting to roughly 242

hours of data [184]. An overview of the datasets is presented in Table 2.1.

While these datasets provide valuable resources for ITS and Smart Mobility research, they

each have notable limitations. For instance, none of these datasets include sensor data from

iOS devices, which limits their applicability across operating systems. Furthermore, they do

not cover transportation modes such as seagoing vessels, which are an integral part of public

transport in many countries [62]. Additional limitations include restricted diversity in sensors,

platforms, devices, participants, and geographical locations. Variations in hardware, operating

systems, and manufacturer-specific sensor designs lead to inconsistencies in sensor data quality

and variability across different devices [48], [185]. Similarly, travel behaviours and movement

patterns differ among individuals and locations and can be influenced by demographic factors

[186], geographical locations [187] and personal habits [188]. As such, Gong, Zhong, and Hu

[189] states the importance of diversity in training data for creating machine learning models

that generalise effectively across various devices, environments, and individual behaviours.

Current datasets often lack sufficient variability in device placement, participant movement

patterns, and human factors such as posture, which are essential for robust transport mode

detection systems. Addressing these gaps is crucial for advancing Intelligent Transportation

Systems (ITS) and Smart Mobility solutions.

2.5 Implementation and Evaluation

While the development of transport mode detection (TMD) models relies on diverse datasets

and advanced machine learning techniques, real-life applicability ultimately depends on how

well these models perform in practical settings. Beyond achieving high accuracy on curated

datasets, models must be validated, optimised, and deployed in ways that ensure reliability,

efficiency, and scalability. This section explores the key aspects of TMD implementation and

evaluation, beginning with model validation techniques to assess generalisation, followed by
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deployment and evaluation considerations related to real-life implementations.

2.5.1 Model Validation

Model validation plays a vital role in ensuring that the trained classifier performs effectively on

unseen data. However, comparing the classification performance of related work is highly

complex due to significant variations in the data used for training [80], as well as discrepancies

in the classes that the classifiers are trained on. While some studies distinguish only between

motorised and on-foot modes [104], others group different classes together, such as train and

tram [124]. Some implementations consider only a limited number of transport modes, whereas

others incorporate a broader spectrum, including stationary, bike, walking, car, train, tram,

subway, and bus [64], [190]. A few studies even extend their scope to include seagoing vessels

[191], though this remains relatively uncommon. While several studies report impressive

classification accuracies exceeding 90% [14], [121], [129], [130], [134], [136], [192], many of these

works rely on location data [14], [129], [130], [192]. Few studies achieve comparable accuracies

using a purely sensor-based approach [74], [85], [121], [136], [140], and among these works, even

fewer reach above 90% accuracy when classifying a broad range of modes [85], [121], [137]. As

such, most sensor-based studies report overall classification accuracies below 90% [60], [124],

[125], [131], [135], [141].

To evaluate classification performance, the most common approach is to split the dataset into

training and test subsets [75], [113], [128], [131], [134], [140], [190], [193]. This approach

ensures that the models are evaluated on unseen data, not present during training. Many

studies also use leave-one-out validation [60] or K-fold cross-validation [113], [125], [143], [147].

Leave-one-out cross validation is most suited with working with small datasets or with limited

instances per class, however when the amount of data is larger, K-fold cross validation should

instead be employed [194]. That being said, employing a holdout validation by splitting the

dataset is generally suggested when working with very large datasets [195].

2.5.2 Implementation and Deployment Considerations

While classification accuracy remains the predominant metric in evaluating machine learning

models, inference time is increasingly recognised as a critical consideration, particularly in

real-time and resource-constrained applications [196]. Several studies have explored the

inference time of machine learning models to better understand the trade-offs between

computational efficiency and predictive performance [14], [73], [131], [154], [192], [196]. For
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example, Fang, Liao, Fei, et al. [131] analysed the inference times of decision tree, support

vector machine (SVM), and k-nearest neighbours (KNN) classifiers. Their findings

demonstrated that while the SVM achieved the highest accuracy, it also incurred the highest

inference time. Conversely, the decision tree, although less accurate, exhibited significantly

lower inference time. The measured inference times ranged from 0.69 to 9715.80 microseconds,

reflecting the diverse computational requirements of the different models. Inference time has

also been studied in the context of mobile devices, where computational resources are often

limited. Oplenskedal, Taherkordi, and Herrmann [14] evaluated their solution on various

mobile devices, reporting inference times between 32 and 59 milliseconds (ms). Similarly,

Matthes and Springer [73] investigated the impact of model configurations on inference times

of convolutional neural networks (CNNs) deployed on mobile devices. Their findings

highlighted a wide range of inference times, from 6.53 to 190.96 ms, depending on the use of

GPU or CPU and the specific model configuration.

The relationship between model complexity and inference time has been a recurring theme in

the literature. Tang and Cheng [192] observed that increasing the number of convolutional

layers generally improves performance but results in longer inference times due to the

increased model complexity, reporting inference times ranging from 1 to 2.3 ms. Moreau,

Vassilev, and Chen [154] also explored the trade-offs in deploying larger models on embedded

devices and demonstrated that while larger models can achieve higher accuracy, longer

inference times may prevent their use in real-time applications. Across various datasets, the

authors reported inference times ranging from 1.81 ms to 4.74 ms. A broader perspective was

provided by Canziani, Culurciello, and Paszke [196], showing that accuracy and inference time

are often in a hyperbolic relationship, where marginal improvements in accuracy can lead to

disproportionately large increases in computational time. Canziani, Culurciello, and Paszke

[196] also demonstrated that the number of operations in neural networks can be an effective

predictor of inference time. These studies collectively highlight the critical importance of

understanding the relationship between model size and inference time in the design and

deployment of machine learning models, as larger models often result in longer inference times

[131], [132], [154], [192], which can be particularly challenging in contexts where computational

resources are constrained or real-time predictions are required.

Solutions for transport mode detection can mainly be implemented remote or locally on-device

and depending on the choice of deployment strategy, various factors needs to be considered,
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such as latency, energy consumption and privacy. Centralised algorithms are

hardware-agnostic, allowing the deployment of complex models, that would otherwise be

infeasible on resource-constrained mobile devices [56], [61]. Wang, Cao, Yu, et al. [68] states

that remote solutions inherently enhance model security, as models deployed on controlled

servers reduce the risk of unauthorised access or leakage. However, as centralisation

concentrates sensitive data in a single location, other authors stress that this can also

contribute to heightening privacy risks [197]. Moreover, continuous data transmission to

centralised servers is resource-intensive for client devices, leading to substantial data transfer

volumes that increase operational costs and deplete mobile device battery life [65], [197]–[199].

Remote systems are also subject to increased latency, as data must travel between the client

and the server. This can cause delays and bottlenecks during periods of high demand, reducing

system efficiency and responsiveness [65], [200], [201]. Finally, maintaining a stable connection

to the server can be difficult in urban or underground environments [197], [202].

Local implementation of transport mode detection solutions offers the advantage of operating

entirely on the device, eliminating the need for data transmission to a centralised system and

relying solely on the device’s internal resources [56], [61]. Additionally, it reduces the

computational overhead associated with data transmission while enhancing user privacy [56],

[68]. By processing data directly on the device, local approaches also significantly reduce

latency, enabling immediate feedback to users [61]. Consequently, many researchers advocate

for fully local transport mode detection solutions, where data collection, preprocessing, feature

extraction, and inference are performed entirely on the device [14], [56], [127]. While local

execution is generally preferred due to its advantages in latency, privacy, and network

independence [65], it is not without challenges. Machine learning models designed for

on-device execution must be simplified to meet the resource constraints of mobile devices.

Larger models can pose difficulties in terms of application installation and updates [61], [68].

Although local solutions eliminate the need for network transmissions, which can lower

computational costs and energy consumption [65], [197], [198], running complex models on the

device can also result in increased energy usage [68].

A crucial consideration in the deployment of machine learning models, particularly on mobile

and embedded devices, is power consumption, which directly impacts the practicality and

sustainability of these models in real-life applications [60], [196], as energy efficient solutions

can prolong the battery lifetime and cut maintenance costs [203]. Battery behaviour is

47



influenced by factors such as temperature and system load [204], meaning that variations in

environmental conditions and workload intensity can further impact energy efficiency and

device longevity. The total energy consumed by a given embedded computing applications is

the sum of the energy required to fetch data from the available memory storage and the energy

required to perform the necessary computation in the processor [159]. However, to better

assess energy efficiency, total energy consumption should be considered alongside throughput,

as power consumption is influenced by computational volume and may be constrained by the

device’s maximum power capacity [203]. Throughput, in turn, depends on which sensors,

features, and sampling frequencies are employed.

As previously mentioned, location-based solutions that utilise GPS incur a significant overhead

in terms power consumption [60], [89], [127], [132], [205]. As such, many researchers have

shifted their focus towards sensor-based approaches, which utilise significantly less power.

However, the use of multiple sensors, especially tri-axial directional sensors can impose

elevated power consumption [72], [135], [206]. Moreover, while higher sampling frequencies

often improve classification accuracy, it also leads to high energy consumption [57], [89]. One

strategy to reduce energy consumption is to train models at a high sampling rate and applying

them during inference at a lower sampling rate [89]. High sampling rates are mainly employed

to reduce noise, however newer barometer chips support internal hardware smoothing and thus

employing the barometer alleviate the need for higher sampling rates [135]. Because of this,

Sankaran, Zhu, Guo, et al. [135], proposed an approach using only the barometer and

compared the power consumption of their solution to that of Google’s Activity Recognition.

While achieving comparable accuracy, their solution consumed 32 milliwatts (mW) as opposed

to Google’s Activity Recognition algorithm, which consumed 35 mW. That being said,

researchers have achieved even less energy consuming transport mode detection solutions while

employing multiple sensors. Lee, Lee, and Lee [127] combined acceleration data with data from

the microphone, and achieved a power consumption of 26.1 mW.

Other than the sensor activations themselves, the processing needed to extract features also

imposes additional power consumption, and employing fewer features reduces the energy

consumption [72], [133]. Taherinavid, Moravvej, Chen, et al. [190] identified seven low-power

features for transport mode detection based on experimentation and prior research. The

process involved combining insights from existing studies and heuristic evaluations to

determine which features were both effective for transportation mode classification and
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suitable for low-power, resource-constrained applications. These seven low-power features

consisted of time and frequency domain features of the accelerometer, magnetometer, and

gyroscope. However, the energy-consuming process of converting data from the time domain to

the frequency domain introduces a trade-off that warrants careful consideration [133]. Ferreira,

Zavgorodnii, and Veiga [56] measured the power consumption of their proposed solution on a

range of devices, resulting in an average power expenditure of 2.5% per hour. The authors

observed a large variability in energy expenditure between the different devices, which could

likely be caused by the battery health of the devices, as batteries lose their capacity over time

by performing successive charges and discharges [56]. Oplenskedal, Taherkordi, and Herrmann

[14] also measured the power consumed of their proposed solution, on a range of devices of

different ages. They measured the energy consumption by extracting battery statistics from

the operating system of the devices, resulting in an energy expenditure between 0.5 and 25

milliampere-hours (mAh) depending on test scenario and device age. The authors note that

accurate transportation mode detection is complex, and usually a high accuracy entails either

an unacceptable power consumption and a high computational overhead, or requiring very

long data sequences.

2.6 Identified Research Gaps

Despite significant advancements in transport mode detection (TMD), there remain significant

challenges that constrain the development of more generalisable, efficient, and applicable

solutions.

2.6.1 Limited Dataset Diversity and Representativeness

One of the most pressing concerns lies in the availability and diversity of datasets. Existing

publicly available datasets exhibit limitations in terms of the number of participants, available

modalities, and device variety, which hinders the ability to generalise findings across diverse

real-life conditions. These datasets frequently fail to account for key human factors such as

varying device placements or individual movement patterns, which are vital for robust and

adaptable TMD models. Furthermore, the lack of datasets incorporating sensor data from iOS

devices limits the development of cross-platform solutions, as existing research primarily

depends on Android-based data collection. Additionally, region-specific modes of

transportation, such as seagoing vessels or niche transport types, are under-represented,

further limiting the applicability of existing datasets.
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2.6.2 Lack of Standardised Feature Selection and Evaluation Methods

Beyond dataset limitations, challenges persist in the selection, extraction, and evaluation of

features for machine learning models. Existing studies employ a wide variety of sensor

configurations, ranging from accelerometers and gyroscopes to geomagnetic rotation vectors

and barometers, but there is little consensus on the optimal set of features for TMD. Different

feature importance techniques, including model-specific and model-agnostic methods, often

yield inconsistent rankings of feature relevance, leading many studies to use domain knowledge

to manually engineer features from raw sensor data. This lack of robust, standardised

approaches for feature selection and importance, results in models that may include redundant

or irrelevant features, increasing computational complexity without necessarily improving

classification performance. This inconsistency creates difficulties in comparing results and

benchmarking performance across studies. It also hinders the development of universally

applicable solutions, as models trained on specific sensor combinations may struggle to

generalise to different setups or environments.

2.6.3 Accuracy Limitations in Sensor-Based Classification

The accuracy of sensor-based TMD solutions remains an area requiring substantial

improvement, particularly when distinguishing between similar transport modes. Although

location-based methods leveraging GPS and GIS data often achieve higher classification

performance, they suffer from high energy consumption and privacy concerns, making them

less suitable for real-time, on-device implementations. Sensor-based approaches offer a

privacy-preserving and energy-efficient alternative but frequently underperform in

distinguishing between closely related transport modes such as trams and trains, particularly

in urban environments where movement patterns and acceleration characteristics overlap. The

variability in device placement further exacerbates this issue, as models trained on data from a

specific placement (e.g., pocket, backpack, or hand) may not generalise well to other contexts.

Hybrid approaches combining location and sensor data have demonstrated improvements in

classification accuracy, but they still rely on location-based features, which reintroduce

concerns regarding power consumption and privacy.
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2.6.4 Energy Efficiency and Privacy

Although outside the primary scope of this thesis, challenges related to energy efficiency and

privacy remain critical considerations. Energy efficiency is a key concern for local, on-device

processing, as many existing solutions depend on high-frequency sensors such as GPS and

accelerometers to achieve high accuracy, leading to significant battery drain and making

long-term mobile deployment impractical. Balancing energy efficiency with accurate and

granular mode classification remains an ongoing challenge, particularly for

resource-constrained devices. Privacy concerns also persist, as many TMD systems rely on

sensitive data, such as GPS trajectories and accelerometer readings, which can inadvertently

reveal personal information, including travel habits, home and work locations, and lifestyle

patterns. These privacy risks are further amplified in centralised architectures, where raw data

transmission to remote servers increases vulnerability to unauthorised access and potential

breaches. While this research acknowledge current limitations regarding energy efficiency and

privacy, and explore potential mitigations, they remain open research challenges in the field.

Addressing the above mentioned challenges requires focused efforts to enhance dataset

diversity, establish standardised methodologies, and design solutions that are both

platform-agnostic and capable of maintaining high accuracy across an extensive range of

transportation modes. Such advancements are essential to push the boundaries of Intelligent

Transportation Systems and ensure their practicality in diverse, real-life scenarios.
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Chapter 3

Methodology

This chapter positions this thesis, and describes the approach taken in order to investigate the

research questions posed in Chapter 1 based on the research gaps identified in Chapter 2. This

chapter contains details regarding the data collection phase, data preparation, and algorithmic

configuration, including a preliminary investigation into the collected data.

3.1 Research Paradigm

This section outlines the philosophical stance and methodological approach underpinning this

thesis. It explains the research paradigm, epistemological position, and how these inform the

iterative design and evaluation of artefacts developed in this work.

3.1.1 Philosophical and Methodological Positioning

This thesis is positioned within the Design Science Research (DSR) paradigm, a framework

that is uniquely suited to address real-life, applied research challenges through the iterative

development, evaluation, and refinement of innovative artefacts [207]. In this research, the

primary artefacts developed include a novel dataset for mobility research, high-accuracy

machine learning models for transport mode detection, a framework for feature evaluation and

reduction, and a platform-agnostic framework for on-device transport mode detection. These

artefacts serve practical needs, such as enabling seamless public transportation ticketing and

providing accurate travel metrics that can enhance public transport planning and route

optimisation for municipalities and other stakeholders.

This research adopts a positivist epistemology, which asserts that knowledge must be

developed objectively through empirical observation, measurable data, and hypothesis testing
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[208]. The positivist perspective aligns well with the DSR paradigm, as it focuses on

quantifiable, empirical evidence derived from systematic data collection and rigorous

evaluation. By employing machine learning algorithms and performance metrics such as

accuracy, precision, recall, and F1-score, this research grounds its findings in objective and

reproducible measurements. The emphasis on quantification and empirical validation ensures

that the developed artefacts not only address theoretical challenges but also demonstrate

practical utility within real-life settings. Positivism also shapes the evaluation strategies used

in this thesis. The reliance on real-life sensor data and statistical methods for feature

engineering, model training, and artefact evaluation reflects a commitment to empirical rigour.

Furthermore, the iterative nature of DSR allows for continuous refinement of the artefacts,

ensuring that they are both scientifically robust and practically relevant. This approach,

informed by positivist principles, ensures that the research contributes to the advancement of

transport mode detection by producing solutions grounded in objective evidence and

systematic inquiry.

The DSR paradigm emphasises constructing artefacts that directly address real-life design

tasks faced by practitioners, aiming to provide solutions that are both functional and

applicable within organisational settings [209]. This approach is a deliberate departure from

the more descriptive aims of natural science, focusing instead on the utility of artefacts and

their real-life applications [210]. This research adheres to DSR principles by progressing

through successive cycles of relevance, design, and rigour by incorporating real-life data from

public transportation to ensure practical applicability, as well as focusing on iterative building

and evaluation of artefacts [211]. While the problems and requirements are inspired by

industry, this thesis is also grounded in established theoretical frameworks and methodologies

relating to intelligent transportation, activity recognition, and machine learning research to

ensure a robust theoretical foundation. By integrating methodologies and theories specific to

transport mode detection and automated fare collection, this thesis ensures a solid theoretical

anchoring, which is essential in DSR for maintaining rigour and advancing the knowledge base.

The practical relevance of DSR is addressed through the artefacts’ design to meet specific

needs in a public transportation context. In this thesis, the frameworks and models are

designed to operate effectively in Intelligent Transportation Systems, to facilitate mobility

analytics, and for optimising fare management and service delivery. This attention to practical

utility is a key component of DSR, where relevance and utility of the artefact in its intended

environment are paramount [212].

53



Figure 3.1: DSRM Process Model employed in this research. Inspired by [209].

3.1.2 Design Cycles and Artefact Development

Following the DSR approach, the development of the artefacts presented in this thesis follows a

systematic, artefact-centric, iterative process. This thesis was initiated in response to a

problem statement identified within the industry. To gain deeper insights into this issue, a

comprehensive literature review of automated fare collection solutions and their enabling

technologies was conducted (Article I). The findings from this review highlighted key

challenges and opportunities, prompting a shift in focus towards transport mode detection.

Despite advancements in transport mode detection, prior research has identified several

persistent challenges that limit the development of generalisable and efficient solutions. These

include the lack of diverse and representative datasets, inconsistencies in feature selection and

evaluation methodologies, and the difficulty of achieving accurate, efficient, and

platform-agnostic on-device inference. Existing datasets often fail to capture real-world

variability in user behaviour, device placement, and transport mode diversity, hindering model

generalisability. Moreover, the absence of standardised feature evaluation techniques results in

models that may include redundant or irrelevant features, reducing efficiency. Finally, while

location-based methods improve accuracy, they introduce privacy concerns and high energy

consumption, making them unsuitable for real-time deployment on mobile devices.

These challenges related to predictive accuracy, platform compatibility, feature importance,

and computational efficiency directly inform the research questions posed in this thesis,

particularly the need for high-accuracy, generalisable models, a systematic framework for

feature evaluation and reduction, and the optimisation of on-device inference for real-time

applications. Grounded in these challenges, this research progressed into the creation of an

initial transport mode detection framework, informed by features based on smartphone sensor

data identified from the literature as significant for transport mode detection (Article II). Each
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subsequent iteration applies a range of processing techniques, feature engineering, and

algorithmic approaches to refine the framework, thus progressively enhancing their

functionality and accuracy (Article III and Article IV). These iterative refinements are

evaluated partly through real-life testing and performance metrics (Article V), such as

precision, recall, F1-score, inference speed, and energy efficiency. This iterative process is

outlined in Figure 3.1, inspired by Peffers, Tuunanen, Rothenberger, et al. [209]. While

Figure 3.1 illustrates the overarching methodology employed in this research, the individual

design cycles vary in their points of initiation. A design cycle, in this context, refers to the

work conducted toward either a specific contribution or a scholarly publication. Specifically,

whereas the first design cycle followed a problem-centred initiation, subsequent iterations

commenced through different entry points. Given that the overarching research problem had

already been established, later design cycles were initiated either through a literature review or

by designing and developing new artefacts or refining existing ones based on the findings of the

preceding cycle. This iterative process is depicted in Figure 3.2.

Figure 3.2: DSRM process for each design cycle conducted in this research. Inspired by [209].

The use of iterative cycles, enables this thesis to contribute both utility by delivering

functional artefacts, as well as scientific rigour by advancing theoretical understanding in

transport mode detection and on-device inference. Evaluation of the artefacts is a central

component of DSR, ensuring that each iteration not only meets theoretical expectations but

also performs effectively in practice. This thesis adopts a quantitative evaluation strategy.

Using a large dataset of real-life sensor data collected from public transport vehicles, each

iteration of the different frameworks is rigorously tested and validated against empirical

metrics. This quantitative approach provides a reliable measure of performance, ensuring that

the frameworks achieve high levels of accuracy and robustness. In DSR, relevance is as critical
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as rigour, as the created artefacts should address tangible problems within their environment

[207]. The frameworks of this thesis are designed with practical utility as a primary objective,

offering various results towards improving intelligent transportation and enabling seamless

automated fare collection solutions.

3.2 Research Approach

Building upon the DSR paradigm, this section details the specific research approach employed

in this thesis, including data collection, feature engineering, and model evaluation. This

approach is structured to ensure that each stage of artefact development aligns with the

principles of DSR, particularly the iterative build-and-evaluate cycles, which is essential for

maintaining both practical relevance and scientific rigour. During the initial stages of the

research period, regular meetings were held with industry stakeholders and public transport

operators to deepen the understanding of the problem, the domain, and specific requirements.

In these discussions, public transport operators emphasised the importance of minimising

infrastructure requirements, and expressed a strong preference for solutions that would not

require the installation of physical equipment on board vehicles due to concerns regarding

scalability and cost. Consequently, the focus shifted from the challenge of in-vehicle presence

detection in AFC solutions to transport mode detection in general, as this can be achieved

locally without the need for external equipment. This approach not only meets the scalability

and cost requirements but can also contribute to in-vehicle presence detection in a more

generalisable manner.

3.2.1 Data Collection

To advance the field of intelligent transportation and transport mode detection, a

comprehensive and representative dataset was essential. Existing datasets lacked diversity

across platforms, devices, sensors, and transportation modes, necessitating the collection of a

new, more diverse dataset. Effective data collection is a cornerstone of research in Intelligent

Transportation Systems, serving as the foundation for reliable model training and evaluation.

To develop a robust dataset, the process must address key principles related to

representativeness and accuracy. Representativeness ensures the dataset reflects the diversity

of real-life conditions, capturing variations in user demographics, geographic locations, and

transportation modes. Accuracy is paramount, requiring data to be precisely labelled and free

from noise or inaccuracies that could compromise subsequent analyses. The importance of

representativeness and accuracy formed the foundation of the data collection strategy
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implemented in this thesis, as the lack of representative data and erroneous labelling can

significantly impact the performance and reliability of the proposed solutions.

Data was collected by recruiting regular travellers in Oslo and Bodø, Norway, who used a

custom mobile application to collect data during their regular travels. A total of 101

participants, including both women and men across all age groups with varied occupations,

were recruited through different communication channels in these two cities. Information

brochures were distributed to travellers at public transport hubs throughout the two cities, and

recruitment efforts extended to festivals and community events organised by the municipalities.

Additionally, information brochures were provided to university students in both cities,

resulting in a broad and diverse sample of participants for the data collection.

Before the data collection phase commenced, all participants attended a two-hour, in-person

training session. This session included information regarding the research project, its main

goals, and how the participant’s data was processed. This training session also emphasised the

importance of accurate data labelling, with clear instructions to delete and refrain from

uploading data if they had any uncertainty about its accuracy. During this session,

participants were divided into small groups, and accompanied by instructors, conducted

several public transport trips to ensure familiarity with the application and proper data

recording techniques. Following the training, participants collected data over a one-month

period, and were provided a complimentary public transport ticket as an incentive. Support

was offered by email throughout the collection period, and any reported incorrectly labelled

data uploaded by mistake, was removed from the database. Data collection was conducted

using the mobile application during the participants’ regular journeys. Figure 3.3 displays the

user interface of the developed data collection application. During each trip, participants

selected the device’s placement location from options including hand, pocket, and other. If the

device was held by the participant, they would select hand. If stored in a pocket, they selected

pocket. The other category included placements such as in a backpack or purse, or in cases like

car or bicycle travel, locations such as a car’s centre console or a bike phone mount.
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Figure 3.3: User interface of the data collection application. Left: Displays the data collection
tab of the application. Right: Shows the verification and data upload tab of the application.

After selecting the device placement, participants would then choose the mode of

transportation in which they were collecting data. The available options were bus, train, tram,

metro, e-scooter, bicycle, boat, car, inside, or outside. While most of these options are

self-explanatory, additional clarification is needed for the terms inside and outside.

Participants were instructed to select inside when they were located within a building and not

inside any vehicle. Conversely, outside was used when participants were outdoors without the

use of vehicles such as e-scooters or bicycles. The outside and inside modalities were designed

to distinguish between transport and non-transport contexts, enabling comparison and helping

to detect dissimilarities across similar transport modes.

Upon initiation, the application would listen to and capture all available sensor events on the

device. This data included readings from both base sensors and composite sensors, as well as

any manufacturer-specific sensors present on the device. Base sensors are hardware-based

components designed to measure motion or ambient conditions directly, such as accelerometers

or magnetometers. Composite sensors, on the other hand, provide data that is derived from

processing or fusing multiple base sensor readings, examples of which include orientation and
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rotation vectors. In addition to sensor data, the application also captured fine-grained location

information and activated the device’s microphone to record sound. To ensure privacy, only

the peak amplitude of the audio was recorded. This was calculated using the following formula:

Apeak = max
i∈[0,readSize−1]

|xi|

Here Apeak represents the peak amplitude, xi denotes the i-th audio sample in the buffer, and

readSize is the total number of samples read from the audio buffer. Data was continuously

collected until the participant explicitly stopped the recording. Once data collection was

halted, the trip data was displayed in the application’s upload tab. In the upload tab,

participants could verify that they had selected the correct mode of transportation and that

they had stopped data collection at the appropriate time, prior to disembarking. If a

participant had forgotten to stop the collection or had selected an incorrect mode, they had

the option to delete the data before uploading. After verification, the participant would upload

the data to a centralised repository for further processing.

3.2.2 Preliminary Analysis

A crucial aspect of machine learning research and development is the thorough analysis and

preparation of data. Therefore, a preliminary statistical and time series analysis of the

collected dataset was conducted to assess its applicability. This preliminary analysis aimed to

assess whether the collected sensor data exhibited sufficient differentiation across transport

modes to support accurate classification by machine learning algorithms. Specifically, the

analysis sought to identify patterns and variations in sensor readings that are characteristic of

different modes of transportation, which would enable the selection of relevant features for

model training. Additionally, the analysis aimed to evaluate the suitability of each sensor type

(e.g., acceleration, gyroscope, magnetic field, and pressure) in capturing unique signatures

associated with specific transport modes, thereby informing decisions on which sensors would

contribute most effectively to transport mode detection. A secondary objective was to assess

the data quality, particularly with regard to the presence of outliers, as outlier treatment could

significantly impact the reliability and performance of the models.
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(a) Average acceleration (m/s) (b) Average magnetic field (microtesla)

(c) average gyroscope (angular velocity) (d) Average pressure (millibar)

Figure 3.4: Average sensor values on Android devices over time per mode of transportation.

Figures 3.4 and 3.5 display the average sensor values for different transportation modes,

aggregated across all participants, across four different sensors collected on Android and iOS

devices respectively. For visualisation purposes, only the most prominent public transport

modes were analysed, using a small subset of the available sensors. A set of time series plots

was generated, capturing the average sensor values over different durations on board five

different modes of transportation. The data was aggregated across all participants to provide

an average representation of three minutes on public transport.
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(a) Average acceleration (m/s). (b) Average magnetic field (microtesla).

(c) Average gyroscope (angular velocity). (d) Average pressure (millibar).

Figure 3.5: Average sensor values on iOS devices over time per mode of transportation.

Specific patterns were challenging to identify visually for acceleration data, despite its

prominence in the literature for Smart Mobility and Intelligent Transportation Systems. The

gyroscope exhibited slightly more variation across modes, suggesting that this sensor could

reveal detectable patterns for machine learning algorithms. In contrast, magnetic field and

pressure data displayed distinct values across different transport modes, indicating clearer

potential for mode differentiation. These trends were consistent across Android and iOS

devices, although the actual values varied between platforms, likely due to differences in

hardware and software. The initial time series analysis across different sensors, transport

modes, and time frames, indicated that machine learning algorithms for transport mode

detection, based solely on the collected dataset consisting of smartphone sensor data, could be
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a viable approach. Having assessed the feasibility of this approach, it became necessary to

evaluate data quality, particularly concerning outliers. Various techniques are available for

identifying outliers. Two widely used methods are based on either standard deviation or the

interquartile range (IQR). Standard deviation is less robust and may be misleading for

non-normally distributed datasets. The collected data was quite skewed, suggesting that a

more robust approach, such as using the IQR, would be more suitable for identifying outliers.

The interquartile range (IQR) is defined as:

IQR = Q3 −Q1

where Q1 is the first quartile (25th percentile) and Q3 is the third quartile (75th percentile).

The bounds for identifying outliers are given by:

Lower Bound = Q1 − 1.5× IQR

Upper Bound = Q3 + 1.5× IQR

A data point x is considered an outlier if:

x < Q1 − 1.5× IQR or x > Q3 + 1.5× IQR

Figures 3.6 and 3.7 illustrates the distribution of sensor values for each transport mode, with

outliers highlighted using the interquartile range (IQR) method. Across all four sensors, for

each transport mode, and on both Android and iOS platforms, a substantial number of outliers

were identified. Due to the significant amount of outliers, removing outliers could lead to sensor

values that are overly similar across different transportation modes, potentially diminishing the

variability necessary for effective classification. In the literature, there is no clear consensus on

whether removing outliers is beneficial for transport mode detection, as the impact of outliers

on model performance varies with the specific problem and dataset. In some cases, outliers

may capture unique variations in sensor behaviour that correspond to specific, less frequent

occurrences within a transport mode (e.g., sudden accelerations in a bus due to braking or

uneven road surfaces on a tram line). It is difficult to differentiate noise from outliers without

the help of an expert [172] and retaining these data points may therefore provide additional,

valuable information that can enhance the model’s ability to differentiate between subtle

variations in transport modes, thereby potentially improving classification accuracy.
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(a) Acceleration (m/s) (b) Magnetic field (microtesla)

(c) Gyroscope (angular velocity) (d) Pressure (millibar)

Figure 3.6: Distribution of sensor data across transport modes on Android devices.

(a) Acceleration (m/s) (b) Magnetic field (microtesla)

(c) Gyroscope (angular velocity) (d) Pressure (millibar)

Figure 3.7: Distribution of sensor data across transport modes on iOS devices.

Given this ambiguity, along with the potential for outliers to reflect meaningful contextual
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information rather than noise, outliers were retained in the dataset. This approach ensures

that the model can access the full range of sensor data variability, thereby capturing distinct

and possibly informative patterns associated with each transport mode. By examining the

dataset’s potential for transport mode differentiation and evaluating data quality, this analysis

provides a foundational understanding that guides the artefact’s development.

3.2.3 Preprocessing and Feature Importance

Based on the insights gained from the preliminary analysis, feature engineering was

undertaken to transform the raw sensor data into informative features that could effectively

represent each transport mode. In line with DSR principles, the feature engineering process

was guided by practical relevance and the unique characteristics identified within the dataset.

By carefully selecting and creating features that captured the distinct patterns observed across

sensor types, the goal was to enhance the model’s ability to differentiate between transport

modes with high accuracy. Throughout this research period, a variety of preprocessing and

feature selection techniques have been explored. From the literature, a popular approach to

handle large amounts of temporal sensor data is to segment and aggregate the data. In this

context there are mainly two aspects that are important when it comes to preprocessing: the

function used for aggregation and the way data is segmented into windows.

While the research community seems to agree on the approach using aggregation and

segmentation, there are very large discrepancies in terms of window size and aggregation

functions. The length of the sliding window is usually between one and 60 seconds, however

longer windows can also be reasonable, although there is a trade-off between granularity and

less resource-consuming inferences and higher window density [73]. The literature does not

present any conclusions as to which configuration is optimal for transport mode detection in

terms of segmentation, and as such various configurations were explored during this research

period. Window lengths of 10, 20 and 30 seconds with a 5-second overlap (step size) were

initially investigated (Article II and Article III) where a configuration of 10-second windows

with a 5-second overlap was chosen, since a smaller window reduces the required pre-inference

data collection and negligible differences were observed when increasing the window size.

However, later experimentation revealed that increasing the size of the window when

simultaneously decreasing the overlap significantly impacted the results (Article V). As such,

segments with window lengths up to 60 seconds were explored with overlap from 5 to 0.1

seconds. A stagnation of the accuracy was observed around 1-second overlap. Using an overlap
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of 1 second while increasing the window size, it was observed that near-optimal accuracy had

already been reached at 15 seconds. Since the pre-inference data collection on device is directly

influenced by the size of the window, the best configuration in the context of on-device

transport mode detection was found to be 15-second windows with a 1-second overlap.

It is important to note that assessment of the segmentation parameters was based on the

accuracy of a model trained with data segmented using 15-second windows with a 1-second

overlap. As such, the results also relied on other aspects of the data, such as features and

normalisation techniques used, and as the research progressed these aspects naturally changed.

As a result, early segmentation experiments cannot be directly compared with later

assessments. Another essential aspect of data preprocessing for transport mode detection is

the selection of aggregation functions. Given that the data is segmented into windows, it is

necessary to aggregate sensor readings within each segment.

Previous studies have employed a variety of aggregation functions, with considerable variation

and no established consensus on which functions are most suitable for mobile sensor data in

the context of transport mode detection. Similarly, significant discrepancies exist regarding the

use of inertial and ambient sensors as features in machine learning models for transport mode

detection. Many of the ambient and inertial sensors available in modern smartphones capture

directional data across the device’s three perpendicular axes (x, y, and z), reflecting movement

or environmental values along these dimensions. To mitigate directional dependency and

provide a more uniform measure, it is possible to compute the magnitude of these three axes.

The magnitude can be given as:

magnitude =
√
(x2 + y2 + z2)

This transformation removes axis-specific variability, enabling the model to focus on overall

intensity rather than direction, which can be particularly useful for transport mode detection.

In the literature, some studies choose to use directional values to capture specific axis-based

movements, while others calculate the magnitude to achieve a more generalised measure of

movement. During this research period, both approaches have been assessed during different

iterations.

In order to identify the optimal combination of sensors and aggregation functions one can

employ different techniques to rank the importance of each feature. Some algorithms have

65



built-in feature importance functionality such as XGBoost and Random Forest. However,

which features are deemed important in the context of decision trees, such as XGBoost and

Random Forest, are not necessarily equally important in the context of neural networks. Some

more generic approaches exists, and the most prominent are Permutation Importance (PI)

[213], Shapley Additive Explanations (SHAP) [214], Mutual Information (MI) [215], Analysis

of Variance (ANOVA) f-test [216], and Classification and Regression Trees (CART) [217].

Permutation importance is a technique used in machine learning to measure the importance of

features in a predictive model. It works by randomly shuffling the values of a single feature

and observing the effect on the model’s performance. The decrease in performance after

shuffling indicates the importance of the given feature. By calculating the average decrease in

performance across multiple shuffles, the features can be ranked based on their importance in

the model. Mutual information is a measure of the dependency between two variables and

quantifies how much information a feature contains about the target variable by measuring

their statistical dependence. Analysis of variance f-test is a statistical test that assesses

whether the means of two or more groups are significantly different from each other. It

calculates an F-score, which can be used to rank the features. SHAP, on the other hand, is a

game theoretic approach designed to explain the output of any machine learning model.

Finally, the classification and regression trees feature importance is a measure of how much a

specific feature contributes to the decision-making process when building a decision tree. The

different feature importance approaches all have their strengths and weaknesses and when used

to gauge the importance on the same dataset, they all produce radically different results.

During the different iterations of this thesis, various feature importance methods were utilised,

such as extracting the intersection across multiple feature importance techniques (Article II

and Article IV) and iterative feature removal (Article III).

Since participants collected data during their regular travels, the dataset underpinning this

thesis exhibited significant class imbalance, with certain transport modes represented far more

frequently than others. This imbalance resulted in the dataset being divided into majority and

minority classes. A substantial disparity in class representation poses challenges for

classification models, as the classifier may become biased toward majority classes, leading to

reduced predictive accuracy for under-represented modes [169]. To address this issue, the

dataset required rebalancing. Given its broad acceptance in the research community, Synthetic

Minority Over-sampling Technique (SMOTE) [170] was applied to resample the minority
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classes in this dataset. This approach was selected as it preserves all original information in

the dataset while synthetically generating new samples in minority classes to improve model

balance. Following SMOTE application, a statistical comparison of the dataset was conducted

before and after resampling to ensure that the algorithm had not significantly altered the

dataset’s overall distribution or introduced artificial bias. The results of this comparison is

shown in Table 3.1.

Table 3.1: Statistical comparison between the original data (O) and the synthetic
data (S): A=Accelerometer, M=Magnetic Field, G=Gyroscope, P=Pressure, X,Y,Z=Axial
direction, N=Magnitude.

Mean Std Skewness Kurtosis

O S O S O S O S

AX 0.356 0.304 2.896 2.802 0.496 0.638 3.777 4.228
AY 0.616 0.709 3.787 3.764 -0.223 -0.156 0.853 0.854
AZ 1.397 1.421 4.791 4.723 0.003 0.001 -0.337 -0.298
AN 5.706 5.582 4.498 4.492 -0.070 -0.022 -1.949 -1.958
MX 59.114 22.240 560.831 431.821 6.632 9.096 51.954 96.707
MY 13.823 11.211 338.520 324.417 8.884 11.080 120.429 164.987
MZ -105.633 -74.987 462.705 396.437 -3.108 1.109 52.410 73.165
MN 297.363 242.473 755.598 630.708 5.972 8.161 40.245 76.656
GX 0.003 0.002 0.034 0.031 2.189 1.612 115.822 111.347
GY 0.001 0.002 0.049 0.044 -2.829 -3.416 233.897 264.774
GZ -0.001 -0.001 0.051 0.045 0.548 0.085 116.455 117.496
GN 0.314 0.278 0.426 0.399 3.412 3.703 15.881 18.968
P 573.948 562.060 452.807 452.778 -0.091 -0.041 -1.991 -1.997

While most changes in the dataset after applying SMOTE were modest, significant shifts were

observed in the magnetic field sensor data. The mean, spread, variability, and distribution of

magnetic field readings (MX, MY, MZ, MN) changed notably, as reflected in increased

skewness and kurtosis values. Although these shifts in magnetic field data were pronounced,

models trained on the synthetically balanced dataset demonstrated significantly improved

performance during experimentation. Consequently, the alterations observed in the magnetic

field sensor data were deemed acceptable, as they contributed to a more effective model

without compromising the dataset’s overall integrity.

Finally, various scaling techniques for normalisation or standardisation were explored. Scaling

is essential for machine learning algorithms that rely on distance-based metrics, such as the

Multilayer Perceptron (MLP), which uses gradient descent methods for training. Without

scaling, raw feature values may cause gradients to be excessively large or small, potentially

destabilising the training process. By applying scaling, this issue is mitigated, resulting in
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more stable and efficient training. A range of scaling techniques were considered, including

MinMaxScaler, StandardScaler, RobustScaler, and QuantileTransform [218]. Some scaling

techniques, such as StandardScaler, are sensitive to outliers. However, given that outliers were

retained in the dataset, it was necessary to select scaling methods robust to their presence.

Consequently, RobustScaler, QuantileTransform, and MinMaxScaler were evaluated.

RobustScaler and QuantileTransform are particularly suited to datasets with outliers, with

RobustScaler centering the data by the median and scaling according to the interquartile

range, and QuantileTransform reshaping feature distributions to follow a uniform distribution.

MinMaxScaler, while not able to reduce the effects of outliers, was also evaluated due to its

ability to linearly scale features within a fixed range. RobustScaler, QuantileTransform, and

MinMaxScaler were evaluated and tested on both Android and iOS devices in a real-life

setting, onboard a variety of public transportation vehicles in order to gauge which technique

was more suitable for improving models for transport mode detection. During the real-life test,

scaling using the QuantileTransformer yielded the poorest performance, with over 90% of

classifications incorrectly labelled as ”other,” despite the majority of classifications occurring

on bus and metro. The models scaled with MinMaxScaler and RobustScaler performed well

and almost equivalent to each other. The MinMaxScaler is one of the most widely recognised

approaches for normalisation and have outperformed other scaling techniques in previous

works [218]. Consequently, MinMaxScaler was selected for normalising the data, which

transforms the data by rescaling each feature to a range between 0 and 1.

In line with the iterative approach central to DSR, the preprocessing and feature engineering

steps were revisited and refined through multiple cycles. Each iteration involved preparing the

dataset, developing an initial model, and assessing its performance, with insights from one

cycle informing improvements in the next. This process of iterative refinement allowed

artefacts to evolve together, enhancing their alignment with the practical requirements of

transport mode detection.

3.2.4 Algorithms and Hyperparameters

In developing a framework for local transport mode detection (TMD), a diverse range of

algorithms were implemented and rigorously evaluated, including deep feedforward neural

networks (DFNN), recurrent neural networks (RNN), convolutional neural networks (CNN), as

well as hybrid architectures combining both RNN and CNN. Additionally, traditional machine
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learning algorithms were assessed, including decision trees, support vector machines (SVM),

and k-nearest neighbours (KNN), along with more advanced approaches like gradient boosted

trees (XGBoost) and ensemble methods such as Random Forest. All of these algorithms were

explored and refined over multiple development cycles. Experimentation revealed that certain

algorithms consistently outperformed others. Specifically, DFNNs and RNNs demonstrated

strong performance relative to SVMs and KNNs. Similarly, gradient-boosted trees and

ensemble tree methods also yielded promising results. Consequently, these initial findings

guided subsequent iterations, emphasising models with multilayer perceptrons (MLP, a type of

DFNN), long short-term memory networks (LSTM, a type of RNN), convolutional neural

network (CNN), as well as tree-based algorithms such as XGBoost and Random Forest.

While much of the model training process focuses on data processing and feature engineering,

as discussed in prior sections, selecting suitable hyperparameters for each algorithm is also

crucial to performance. Hyperparameters are model-specific configurations that are set before

training begins and control aspects of the learning process, such as the learning rate,

regularisation strength, or maximum depth in decision trees. For neural networks,

hyperparameters include the number of layers (stages of transformation the data undergoes)

and nodes (individual units within each layer that process data). The configuration of layers

and nodes is essential to model complexity, as additional layers enable deeper feature

extraction, while more nodes within layers can capture finer data details. However, finding the

optimal combination of these hyperparameters requires careful tuning to balance model

complexity and computational efficiency.

Throughout the iterative cycles of this thesis, MLP LSTM, CNN, XGBoost and Random

Forest have all undergone continuous refinement and optimisation in terms of configuration

and performance. Determining the optimal configuration for machine learning algorithms is

particularly challenging, as the effectiveness of a given configuration only becomes apparent

after the training phase, which is often time-consuming and resource-intensive. While many

researchers and practitioners rely on experimentation to identify effective configurations,

systematic frameworks such as grid search and random search are available to optimise this

process. Grid search involves exhaustively testing all possible combinations of specified

hyperparameters, providing a comprehensive, though often time-intensive, approach to

configuration. In contrast, random search randomly selects combinations within a defined

parameter space, offering a more efficient alternative by exploring a broader range of
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configurations without testing each one exhaustively. Both grid search and random search were

explored with varying levels of success.

Initial experimentation provided a foundational understanding of parameter ranges suited to

this problem, and subsequent attempts with random search did not yield performance

improvements beyond what had been achieved through manual tuning. Consequently, random

search was set aside in favour of grid search in later iterations, leveraging insights gained from

prior experimentation and the literature [219] to refine parameters more systematically.

Table 3.2: Grid search hyperparameters.

Optimisation

Parameter Values Best

Learning Rate 0.0001, 0.0002, 0.0003, 0.0004, 0.0005,
0.0006, 0.0007, 0.0008, 0.0009

0.0004

Activation relu relu
optimiser adam, rmsprop adam
Initializer glorot uniform, he normal glorot uniform

Architectural

Parameter Values Best

# Layers 1 to 15 14
# Nodes 100, 150, 200, 250, 300, 350, 400, 450, 500,

550, 600, 650, 700, 750, 800, 850, 900, 950,
1000

800

Android accuracy 99.3 %
iOS accuracy 99.6 %

In later iterations, grid search was employed to surpass the previously achieved performance in

the MLP-based approach. Two distinct parameter sets, optimisation and architectural, were

defined to address different aspects of the model configuration. By dividing these parameters

into separate processes, a broader range of configurations could be tested with reduced

resource and time demands. A threshold of 1,000 epochs was established, along with an early

stopping mechanism, which halted training after five consecutive epochs without improvement

in accuracy.

During the work presented in Article V, the objective was to evaluate a platform-agnostic

model for transport mode detection, necessitating assessment on distinct datasets from

Android and iOS platforms. To identify an optimal architecture across both platforms, it was
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essential to find the intersection of configurations yielding the highest accuracy on both

datasets. Table 3.2 provides an overview of the parameters and values explored, highlighting

the best-performing configuration in each category and the highest accuracy achieved on both

holdout sets.

Initially, a third parameter set for regularisation was included. However, since accuracy was

the primary success metric, configurations with regularisation were initially suboptimal, as

regularisation tends to reduce accuracy while enhancing model robustness and generalisability.

To further assess model robustness, the best configuration from the grid search on real devices

was deployed and assessed, onboard public transport vehicles. Despite high performance on

the holdout dataset, the model exhibited suboptimal accuracy in real-life conditions,

suggesting overfitting. Overfitting occurs when a model captures noise or irrelevant details in

the training data, impairing its generalisation to unseen data.

To address this, various regularisation techniques were tested, including L1, L2, and combined

L1L2 regularisation, alongside dropout layers. L1 regularisation encourages sparsity by

penalising the absolute value of model weights, driving some coefficients to zero, whereas L2

regularisation adds the squared weight values to the loss function, reducing the impact of

individual features without zeroing coefficients. L1L2 regularisation combines both techniques,

balancing sparsity and smaller weight sizes. Implementing regularisation techniques requires

setting a lambda value, which determines the regularisation strength, where larger values

enforce stronger regularisation. After testing values from 0.00001 to 0.2, it was observed that

values above 0.01 impaired learning, as such an upper limit of 0.01 was set. Additionally,

dropout layers were applied between hidden layers to prevent overfitting. Dropout layers

randomly deactivate neurons during training, promoting the development of robust feature

representations. Consistent with prior research [219], a dropout rate of 50% was found be the

best configuration of dropout layers to mitigate overfitting in the final model configuration

used in Article V.

3.2.5 Evaluation

Throughout the iterative development cycles, trained models were evaluated in both simulated

and real-life settings to ensure robust performance. This section details the evaluation

methodologies, including the metrics, testing environments, and experimental setups used to

validate model accuracy, robustness, and adaptability across diverse transport scenarios. While
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all models and artifacts were evaluated on unseen real-life data, only a subset was implemented

and tested in real-world contexts.

The primary evaluation metric employed in this research was accuracy, which measures the

proportion of correct predictions out of the total number of predictions. To further understand

classification performance, confusion matrices were utilised, which reveal the distribution of

correct and incorrect classifications across each class. The F1-score was also an important

metric, combining precision and recall to give a balanced view of the model’s performance in

handling both positive and negative instances. Precision measured the proportion of correctly

identified positive instances among all predicted positives, while recall assessed the model’s

ability to capture all actual positive instances.

In addition, training time and inference time were evaluated to quantify the impact of

dimensionality reduction on model efficiency. Training time was measured by starting a timer

at the initiation of model training and stopping it upon completion. Similarly, inference time

was measured by initiating a timer just before inputting the preprocessed data into the model

and stopping it immediately upon obtaining the model’s output. Several models were also

deployed on real devices and evaluated in real-life settings onboard public transport vehicles.

The real-life implementations included multiple configurations of MLPs and LSTMs, enabling

a comparative assessment of model performance under actual operating conditions.

Table 3.3: Overview of devices used for real-life evaluation.

Device OS Version Battery Capacity (mAh)

Sony Xperia 1 (J9110) Android 11 (30) 3330
Pixel 7a Android 14 (34) 4385
Samsung Galaxy S21 FE
(SM-G990B)

Android 14 (34) 4500

Samsung Galaxy S22 Ultra
(SM-S908B)

Android 14 (34) 5000

Samsung Galaxy S23
(SM-S911B)

Android 14 (34) 3900

iPhone 8 iOS 16.7.10 1821
iPhone 13 iOS 17.2.1 3240

Additionally, a configuration of XGBoost was also evaluated on new data, not stemming from

the original dataset. It is important to note that not all assessments were conducted with

systematic, rigorous evaluation methods. Over the course of this research, hundreds of models

were developed, making it impractical to systematically implement and evaluate each one
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under real-life conditions, as implementation and testing onboard public transport vehicles is

highly time-intensive. As a result, many real-life assessments were conducted on a relatively

small number of trips and devices, to quickly verify or invalidate results from evaluations

performed on unseen data collected during the data collection phase. The comprehensive and

systematic assessments were conducted using the devices present in Table 3.3, onboard a

variety of public transportation vehicles.

When evaluating models on real devices, factors beyond classification accuracy and inference

time become significant. Mobile devices are resource-constrained, particularly in terms of

battery life, making it essential to assess the energy impact of model deployment. For Android

devices, the energy consumption was measured by extracting energy usage statistics from the

operating system using the Android Debug Bridge (ADB). Although the data provides

estimations rather than precise measurements, it offers a reliable indication of whether the

model imposes an excessive energy demand. For iOS devices, extracting energy usage data

after real-life assessments proved challenging. Given that the model configuration was identical

across both Android and iOS, and the goal was simply to gauge energy consumption, energy

usage was measured exclusively on Android devices.
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Chapter 4

Results

Grounded in an iterative process of assessments conducted across both simulated and real-life

environments, this chapter details the outcomes of the artefact development central to this

research. Each artefact presented in this thesis has been shaped and refined through multiple

design cycles, ensuring both rigour and practical applicability. These cycles have informed the

development of key contributions, which include: (1) NOR-TMD, a curated dataset designed

to advance mobility research, (2) high-accuracy transport mode detection models, (3)

EFR-TMD, a generalised feature-ranking framework for identifying critical features across

diverse algorithms for transport mode detection, and (4) a platform-agnostic framework for

local transport mode detection. In line with the principles of Design Science Research (DSR),

these contributions reflect a systematic, iterative process of development and evaluation,

leveraging insights gained at each stage to enhance the effectiveness and relevance of the

resulting artefacts. To clarify how each article contributes to the overall research objectives

and design process, the following section systematically maps the included articles to the key

research questions, contributions, and design cycles underpinning this thesis.

4.1 Mapping Articles with Research Questions, Contributions

and Design Cycles

The results of this thesis stem from a series of articles, each presenting distinct contributions

that collectively address the overarching research questions. The experiments and

developments described within these articles were organised following the DSR paradigm,

structured as iterative design cycles. This section details how each article corresponds to

specific design cycles, key contributions, and research questions, providing a clear and

structured overview of how the individual components of this work integrate to advance the
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overall research goals.

4.1.1 The Link Between Articles and Research Questions

Each research question in this thesis is addressed through the combined findings and

developments presented across multiple articles. Rather than a direct one-to-one mapping, the

research questions are answered by the integrated outcomes of several studies, reflecting the

iterative and comprehensive nature of the DSR paradigm applied in this thesis. Table 4.1

summarises how the collective contributions of the articles align with and support the

investigation of each research question. It is important to note that while Articles II–V

directly address the core research questions, Article I serves a foundational role by providing a

comprehensive survey of the automated fare collection landscape. Article I helped shape the

problem context and motivated the subsequent research focus but does not contribute directly

to answering the research questions.

Table 4.1: Mapping of Articles to Research Questions

Research Questions Article

RQ0: How can efficient on-device, platform-agnostic transport mode detection
be achieved on mobile devices?

II-V

RQ1: How can machine learning models achieve high accuracy in transport
mode detection across diverse transport modes, ensuring generalisability in
real-life applications?

II-III

RQ2: How can a standardised framework for feature evaluation and reduction
systematically identify relevant features, ensuring consistency and enabling
reliable feature reduction across machine learning models?

II-V

RQ3: How can transport mode detection models be optimised for real-time,
low-latency inference while maintaining computational efficiency on mobile
devices?

IV-V

Together, these articles not only provide comprehensive answers to the research questions but

also lay the foundation for the key contributions of this thesis. The following section maps the

relationship between the articles and the major contributions, highlighting how each piece of

work advances the overall research objectives.

4.1.2 The Link Between Articles and Contributions

The key contributions of this thesis, initially outlined in the introduction, are each grounded in

specific articles. These contributions include the creation of a comprehensive dataset for

transport mode detection and the development of accurate and generalisable classification
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models. In addition, a framework for feature selection and dimensionality reduction is

introduced and evaluated, along with a lightweight, platform-agnostic framework for on-device

transport mode detection. Article IV presents the NOR-TMD dataset, a comprehensive,

cross-platform dataset collected in real-world settings. Article II and Article III focus on

achieving accurate and generalisable transport mode classification using machine learning,

leveraging this dataset. Article IV also introduces EFR-TMD, a model-agnostic framework for

ensemble-based feature evaluation and reduction. Finally, Article V contributes a lightweight,

platform-agnostic deployment framework for on-device transport mode detection. Table 4.2

summarises how each contribution is linked to the corresponding article.

Table 4.2: Mapping of Articles to Contributions

Contribution Article

NOR-TMD: A Comprehensive Dataset for Transport Mode Detection IV

Accurate and Generalisable Transport Mode Classification II-III

EFR-TMD: A Framework for Feature Evaluation and Reduction IV

Lightweight, Platform-Agnostic On-Device Framework V

4.1.3 The Link Between Articles and Design Cycles

The five articles collectively follow an iterative design cycle, each contributing to different

stages of the research process. Article I provides foundational background and motivation.

Article II and Article III focus on developing and improving machine learning models for

accurate and generalisable transport mode detection. Article IV introduces the EFR-TMD

framework for systematic feature evaluation and reduction, addressing model efficiency. Article

V validates the optimised models through real-world, on-device deployment. This progression

reflects a coherent research trajectory from problem identification to practical implementation,

tightly linking the articles to the research questions.

Table 4.3: Mapping of Articles to Design Cycles

Design Cycle Description Article

1: Survey of Automated Fare Collection Solutions in Public Transportation I

2: NOR-TMD IV

3: Multilayer Perceptron II

4: Extreme Gradient Boosting III

5: Ensemble Feature Ranking Framework II, IV

6: Platform-Agnostic Framework for Local Transport Mode Detection V
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Table 4.3 exhibits the relationship between design cycle and article. This mapping provides a

clear overview of how each design cycle and its related publications contribute to addressing

the core research questions and producing the thesis contributions. The subsequent sections

describe the design cycles in detail, highlighting methods, results, and their significance.

4.2 Design Cycle 1: Survey of Automated Fare Collection So-

lutions in Public Transportation

The first design cycle focused on conducting a comprehensive review of automated fare

collection (AFC) systems and enabling technologies in public transportation (Article I).

Referring to Figure 3.2, this cycle was initially guided by a problem identified in the industry

and subsequently advanced through all relevant activities. This foundational effort sought to

identify current practices, emerging trends, and critical gaps in existing solutions, laying the

groundwork for the subsequent development of innovative artefacts. The review analysed a

broad spectrum of literature, technological implementations, and case studies, offering insights

into the state of AFC systems and their interplay with IoT, predictive behaviour modelling,

sensor analytics, and machine learning. This review revealed that while many AFC systems are

in place, they often rely on traditional check-in/check-out (CICO) mechanisms, which require

active user interaction. AFC depend heavily on hardware like NFC or RFID-enabled cards,

QR code scanners, and mobile apps, which while effective in specific contexts, impose cognitive

and operational burdens on users. Furthermore, CICO approaches generate limited data

points, offering only transactional records without deeper insights into passenger behaviour.

Limitations related to user interaction and hardware dependency underscore the need for a

paradigm shift toward fully automated AFC systems, such as Be-in/Be-out (BIBO)

frameworks, which leverage passive sensor data to eliminate the need for user intervention

entirely. The review also highlighted that most AFC solutions inadequately address the

intricacies of transport mode detection, a crucial requirement for implementing automated

systems. Current approaches often fail to seamlessly integrate multi-modal transportation,

complicating fare calculations and user experiences. Technologies such as GPS, BLE,

accelerometers, and gyroscopes were identified as potential enablers of in-vehicle presence and

transport mode detection. However, their application remains fragmented, with significant

challenges in achieving precision, energy efficiency, and privacy preservation.
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Through discussions with public transport operators in Norway, it became evident that

achieving fully autonomous AFC systems without the need for additional hardware is a critical

requirement. Given that the majority of the reviewed literature relies on supplementary

equipment, this research shifted its focus towards transport mode detection, as it can be

implemented without external devices. Furthermore, accurate classification of travel modes

serves as a fundamental prerequisite for ticket issuance, thereby facilitating the development of

fully autonomous AFC systems.

While this design cycle and the corresponding Article I did not result in one of the primary

contributions of the thesis, it played a foundational role. Through a structured review of

existing Automated Fare Collection (AFC) systems and enabling technologies, this cycle

established the theoretical grounding for the research and helped scope the problem space.

Insights from the literature and stakeholder discussions redirected the focus toward transport

mode detection as a viable pathway toward fully autonomous fare collection systems without

reliance on external hardware. In this way, the cycle contributed to the formulation of the

overarching research agenda and motivated the development of subsequent artefacts addressing

transport mode detection using inertial and ambient smartphone sensors.

4.3 Design Cycle 2: NOR-TMD

Building on the findings from the previous design cycle, it became evident that a large and

diverse dataset was essential to addressing the challenge identified by industry stakeholders.

Consequently, this cycle was structured around this objective, beginning with a review of

existing literature on dataset requirements and publicly available datasets.

This review revealed a significant lack of publicly accessible datasets, reinforcing the necessity

of collecting a large dataset to support the research objectives. This resulted in the

NOR-TMD dataset, collected over a one-month period by 101 regular travellers across two

Norwegian cities. This dataset is a significant contribution and addresses limitations observed

in existing publicly available datasets [72], [123], [183], [184], particularly in terms of devices,

participants, sensor variety, and representation of transportation modes. A key strength of this

dataset is diversity, as it also covers sensor data collected from both Android and iOS devices.

The dataset comprises a total of 609.68 hours of sensor data, covering ten distinct

transportation modes and three device placement categories, as can be seen in Table 4.4.
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Table 4.4: The number of hours of data collected within each modality.

Mode Hand Pocket Other Total

BUS 204.39h 65.06h 3.89h 273.34h
METRO 74.14h 26.34h 1.73h 102.21h
BOAT 2.41h 48.24h 25.78h 76.43h
OUTSIDE 14.76h 22.53h 1.15h 38.45h
TRAM 26.93h 6.08h 3.02h 36.03h
TRAIN 19.08h 5.16h 5.2h 29.44h
BICYCLE 0.43h 15.9h 5.52h 21.85h
CAR 3.65h 3.13h 14.27h 21.05h
INSIDE 1.13h 0.85h 5.61h 7.6h
E-SCOOTER 0h 3.28h 0h 3.28h

Total 346.92h 196.57h 66.17h 609.68h

The dataset consists of data from a large variety of devices, including 11 different

manufacturers and 57 unique models. The amount of data collected through each device

manufacturer is presented in Figure 4.1. Data was collected from 14 different sensors across

both Android and iOS devices, as detailed in Figure 4.2. Additionally, data from the devices’

built-in activity recognition was recorded and included in the dataset. However, since this

feature operates at a very low frequency, only providing updates when a context change is

detected, it has been excluded from Figure 4.2 for clarity and readability.

Figure 4.1: Distribution of data collected through each phone manufacturer.

NOR-TMD serves as a comprehensive resource for Smart Mobility research, supporting the

training of machine learning models for multiclass classification of transportation modes. The
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structure and content of NOR-TMD were designed to enhance generalisability across devices

and contexts, addressing issues of device homogeneity and limited sensor data that often

restrict existing datasets. As the foundational resource for the experiments and evaluations

conducted throughout this research, this dataset has demonstrated high utility in enabling

robust model training for transport mode classification across diverse algorithms (Articles

II-V).

Figure 4.2: Distribution of data collected for each sensor.

In terms of temporal coverage, the dataset spans two separate 1-month periods, capturing

different times of the day, from morning rush hours to late-night periods. This ensures that the

dataset includes a wide variety of transportation scenarios, such as peak traffic hours, off-peak

hours, and variations in transport availability. Geographically, the data was collected in two

distinct cities in Norway, providing a mix of urban and suburban transport environments. This

temporal and spatial diversity makes the dataset suitable for studying transport mode

detection across a range of real-life settings, both in terms of daily commuting patterns and

geographic variability. Figure 4.3 illustrates the total amount of data collected for each hour of

the day, along with the distribution density of the collected data. The line plot shows the

exact number of data points collected each hour, highlighting specific periods of high activity,

such as between 5 and 9 in the morning, followed by a sharp drop between 9 and 15, which

80



corresponds to regular work hours. This plot reflects the raw data and provides a detailed view

of data collection trends. In contrast, the Kernel Density Estimate plot (right side) offers a

generalised view of the overall trends in the data collection density across time.

Figure 4.3: Data collected each hour of the day.

Although this dataset was primarily designed for transport mode detection, it has potential

applications across various research areas. The sensor data could be utilised to identify

patterns in movement and surroundings, making it adaptable for applications such as general

activity recognition. Additionally, urban planners may find value in using the dataset to

analyse public transportation usage patterns, providing insights to improve transport

infrastructure. The temporal and geographic diversity of NOR-TMD also makes it suitable for

applications in health monitoring, such as examining daily movement trends and identifying

shifts in physical activity over time.

The NOR-TMD dataset developed in this design cycle is a significant contribution that forms

the empirical foundation for this thesis. By addressing limitations in existing datasets and

providing extensive, diverse, and realistic data, NOR-TMD directly supports the investigation

of RQ1, RQ2, and RQ3, and thereby contributes to answering the overarching RQ0. The

dataset underpins the experiments and evaluations presented in Articles II to V, enabling

accurate, generalisable, and efficient transport mode detection. The relationships between

articles, research questions, and key contributions are detailed in Tables 4.1, 4.2, and 4.3,

which provide a comprehensive overview of how this dataset supports the research objectives

across design cycles.

81



4.4 Design Cycle 3: Multilayer Perceptron

Building on the foundational dataset developed in Design Cycle 2, the third design cycle

focuses on assessing the feasibility of using the collected sensor data for transport mode

detection. This is addressed through two primary objectives: (1) identifying the most relevant

features for transport mode detection using an ensemble of feature evaluation techniques, and

(2) developing an efficient, high-accuracy multilayer perceptron (MLP) model tailored for

on-device transport mode classification of Android sensor data. Consistent with the previous

design cycle, this cycle adopted an objective-centred approach, as it marked the initial attempt

at developing a model for sensor-based transport mode detection (Figure 3.2). This cycle

sought to address the challenges of feature selection and model design by integrating diverse

methods to evaluate feature importance and deploying lightweight yet effective neural network

architectures. The results from this cycle provide valuable insights into feature relevance and

demonstrate the feasibility of implementing local, on-device transport mode detection.

4.4.1 Feature Evaluation

To systematically identify the most relevant features for transport mode detection, this cycle

employed an ensemble of feature importance techniques. The absence of a standardised

method for evaluating feature importance in this domain necessitated an innovative approach

leveraging multiple complementary algorithms. The ensemble included Classification and

Regression Trees (CART) [220], Random Forest [221], XGBoost [222], ANOVA f-tests [223],

and Mutual Information [224]. As each technique generates outputs on varying scales,

individual thresholds were established to isolate the most relevant features for each approach.

Thresholds were selected based on observed distribution patterns within each technique’s

results, allowing for a clear separation between features of high and low importance. Features

exceeding these thresholds were combined to form a final feature set, which demonstrated the

highest performance across models trained using this ensemble approach.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Feature importance analysis using different methods: (a) CART, (b) Random Forest,
(c) XGBoost, (d) ANOVA f-test, and (e) Mutual Information. The X-axis represents features
(indexed from 0 to 80), while the Y-axis shows the relative importance score assigned by each
method.

Figure 4.4 illustrate the feature importance rankings generated by each technique, highlighting

their unique contributions to the final feature set. The ensemble approach yielded higher

accuracy than individual feature importance techniques; however, as thresholds were

determined intuitively and the approach was only tested on Android data, further refinements

in terms of normalisation and evaluation was necessary to more systematically identify the
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best features in subsequent iterations.

4.4.2 Model Development

The primary focus of this design cycle was the development and evaluation of a lightweight,

multilayer perceptron (MLP) model capable of performing transport mode detection on

Android devices. The choice of MLP was guided by the algorithm’s balance between

computational efficiency and predictive performance, making it well-suited for deployment in

resource-constrained environments such as smartphones. The dataset used for model training

and evaluation was based on NOR-TMD and included features derived from common

smartphone sensors, such as the accelerometer, gyroscope, magnetometer, pressure sensor,

rotation vector, and game rotation vector. Raw sensor readings were then aggregated using

statistical functions, including mean, standard deviation, and quartile values, to generate

features optimised for classification tasks. The model was trained to classify multiple transport

modes, including bus, metro, train, tram, and a general other category encompassing walking,

bicycling, and car travel. This classification scheme was designed to reflect the study’s focus on

public transport, grouping walking, bicycling, and car travel under a single other category to

simplify the detection task and emphasise distinctions between public transport modes.

Precision Recall F1-Score Support

BUS 0.91 0.96 0.93 19331
METRO 0.90 0.89 0.90 10271
OTHER 0.93 0.92 0.92 9428
TRAIN 0.83 0.65 0.73 1174
TRAM 0.79 0.67 0.73 2752

Accuracy 0.91 42956
Micro Avg 0.87 0.82 0.84 42956
Weighted Avg 0.90 0.91 0.90 42956

Figure 4.5: Classification report and confusion matrix for local model.

The resulting MLP model achieved an accuracy of 90.6% on unseen data collected in real-life

settings, effectively distinguishing between transport modes across the defined categories.

Figure 4.5 presents the classification report, which includes precision, recall, and F1-scores, as

well as a confusion matrix highlighting classification performance across all transport modes.

The model demonstrated particularly high precision and recall for classes with large amounts

of test samples (support), such as bus, metro, and other. These results strengthen existing

works that employ MLP architectures by confirming their utility for transport mode detection

while also attesting to the applicability and robustness of the curated dataset proposed in this
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thesis, NOR-TMD, as a foundation for developing effective transport mode classification

models. Furthermore, the lightweight design ensures compatibility with frameworks, such as

TensorFlow Lite, facilitating seamless deployment on Android smartphones. This enables fully

local processing, thereby supporting privacy-preserving solutions by eliminating the need to

transmit sensitive data to external servers.

This design cycle makes critical contributions toward answering the core research questions by

advancing feature evaluation methods (addressing RQ2) and demonstrating the feasibility of

efficient, high-accuracy transport mode classification through the multilayer perceptron

(addressing RQ1). The work conducted here is documented in Article II and lays the

groundwork for subsequent cycles by providing both a systematic feature selection approach

and a practical model architecture tailored for on-device deployment on Android devices.

Together, these advances directly support the overall goal of efficient, generalisable, and

privacy-preserving transport mode detection outlined in RQ0 and RQ3.

4.5 Design Cycle 4: Extreme Gradient Boosting

The fourth design cycle aimed to explore the use of Extreme Gradient Boosting (XGBoost), a

tree-based ensemble learning algorithm, for transport mode detection. Building on the results

and insights from the previous cycles, this iteration deliberately adopted a fundamentally

different approach to feature evaluation to assess whether alternative methodologies could

enhance model performance. Additionally, the scope of evaluation was broadened to include a

more diverse range of transport modes. The primary goals of this cycle were twofold: (1)

systematically explore feature importance using feature ablation and (2) develop high-accuracy

transport mode detection models for both Android and iOS platforms. Building on the results

of the previous cycle, this phase can be regarded as a refinement of the initial artefact

developed earlier. Consequently, this design cycle commenced with a design and development

centred initiation (Figure 3.2) to derive an enhanced artefact for transport mode detection.

4.5.1 Feature Evaluation

In contrast to the ensemble-based feature selection method used in earlier cycles, this cycle

employed a feature ablation approach to evaluate the individual contributions of sensors and

aggregation functions to model accuracy. This approach systematically removed individual

features, one at a time, to measure their impact on model performance. The goal was to

provide direct insights into the relevance of each feature and identify any that might adversely

85



affect the model’s effectiveness. The feature ablation process involved training an initial model

using the full feature set as a baseline for comparison. Models were then trained with one

sensor or aggregation function removed in turn, and the resulting accuracy differences were

recorded. As shown in Table 4.5, removing individual sensors or aggregation functions

generally resulted in only minor changes to accuracy, with the notable exception of the

magnetometer on iOS, whose removal caused a significant accuracy drop. This indicates that

while the model can maintain high accuracy without certain features, it often compensates for

the removal of a feature because other sensors and aggregation functions capture related or

overlapping information. The results underscore that the overall performance depends on the

combined presence of multiple features rather than the criticality of any single one, with the

magnetometer on iOS being an exception, indicating its unique role in differentiating transport

modes on iOS devices.

Table 4.5: Model accuracy (%) after sensor and aggregation function removal.

Sensor Removed Android iOS
Function
Removed

Android iOS

Accelerometer 96.68 96.99 Min 96.60 97.02
Magnetometer 95.26 87.51 Max 96.80 97.01
Orientation 96.90 N/A 1st quantile 96.75 96.98
Gyroscope 95.66 97.05 2nd quantile 96.74 97.12
Barometer 95.99 95.87 3rd quantile 96.71 96.97
Gravity 96.82 97.08 Average 96.73 97.12
Linear acceleration 96.84 N/A Range 96.91 97.18
Rotation vector 96.76 N/A Variance 96.89 97.01
Game rot. vector 96.92 N/A Standard deviation 96.76 97.19
Motion quaternion N/A 96.73
Rotation rate N/A 97.11
Audio 96.49 96.91

All features 96.86 97.08

In addition to feature ablation, aggregation functions were evaluated by training separate

XGBoost models using only one aggregation function at a time. This approach was taken

because the ablation study revealed only minimal differences in accuracy, making it

challenging to draw clear conclusions about the contribution of individual aggregation

functions. The results in Table 4.6 highlight that certain functions, such as minimum,

maximum (Android), and 1st quantile (iOS), captured key variability in the data and delivered

higher accuracies. Conversely, functions like variance and standard deviation were less

informative, with the range function notably reducing accuracy on iOS. Despite these findings,

retaining all aggregation functions in the final models proved beneficial, as their combined use

consistently yielded the highest overall accuracy.
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Table 4.6: Aggregation function experimentation.

Android model iOS model
Aggregation function accuracy % accuracy %

Min 94.58 94.76
Max 94.97 95.23
1st quantile 92.71 95.50
2nd quantile 92.98 95.25
3rd quantile 93.26 95.27
Average 92.34 94.78
Range 92.06 84.73
Variance 87.03 82.89
Standard deviation 86.95 82.83

The feature ablation results provided valuable insights into the utility of individual sensors and

aggregation functions, highlighting platform-specific differences and reinforcing the need for a

comprehensive, adaptable approach to feature evaluation. This experiment underscored the

exploratory nature of this design cycle, paving the way for refinements in subsequent iterations.

4.5.2 Model Development

During the work on Article III, XGBoost was selected due to its promising performance

reported in the literature. Two models were developed using the XGBoost algorithm: one

trained on data from Android devices and another on data from iOS devices. The goal of this

experiment was to determine the highest achievable accuracy based on the collected data. To

this end, audio was incorporated, as well as synthesising the minority classes using SMOTE.

The data was preprocessed according to the procedures detailed in Chapter 3 in order to

generate features for the model. In this iteration, the whole spectrum of transportation modes

was utilised, including the following modes: ”bus”, ”metro”, ”train”, ”tram”, ”other”,

”bicycle”, ”boat”, and ”car”. In addition, the model trained on Android data also

incorporated ”e-scooter”. The mode ”e-scooter” was not present in the iOS data. Table 4.7

show the classification report of the two models, including precision, recall, and F1-score.

Figures 4.6 and 4.7 display the confusion matrices for the two final models trained on data

from Android and iOS devices, respectively. Both models were evaluated on unseen data,

consisting of 30% of the initial data collection.
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Table 4.7: Classification reports for XGBoost.

Android iOS

Precision Recall F1-score Support Precision Recall F1-score Support

BICYCLE 0.99 1.00 1.00 16523 1.00 1.00 1.00 23183
BOAT 1.00 1.00 1.00 16669 1.00 1.00 1.00 23025
BUS 0.98 0.99 0.98 16497 0.98 0.97 0.97 23112
CAR 1.00 1.00 1.00 16465 0.99 0.99 0.99 23304
E-SCOOTER 1.00 1.00 1.00 16428 - - - -
METRO 0.98 0.97 0.97 16477 0.96 0.96 0.96 22799
OTHER 0.99 0.99 0.99 16596 0.99 1.00 0.99 22898
TRAIN 0.99 0.99 0.99 16501 0.97 0.97 0.97 23077
TRAM 0.97 0.98 0.98 16603 0.95 0.96 0.96 23160

Accuracy 0.99 148759 0.98 184558
Micro avg 0.99 0.99 0.99 148759 0.98 0.98 0.98 184558
Weighted avg 0.99 0.99 0.99 148759 0.98 0.98 0.98 184558

Figure 4.6: Confusion matrix Android. Figure 4.7: Confusion matrix iOS.

The Android model achieved an accuracy of 98.91%, while the final iOS model reached

98.03%. Although the primary focus of this research is on local transport mode detection, the

XGBoost models are likely more suitable for deployment in centralised environments rather

than directly on mobile devices. While no theoretical barriers prevent XGBoost from running

on mobile hardware, current mobile machine learning frameworks, such as TensorFlow Lite,

does not support it natively. TensorFlow Lite is optimised for running deep learning models on

mobile and embedded devices, rather than tree-based models like XGBoost. Given that

XGBoost models can require considerable memory and computational resources depending on

the number and depth of trees they may not be optimal for direct deployment on

resource-constrained mobile devices. Instead, XGBoost may be better suited for deployment
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on more computationally powerful servers, instead providing transport mode detection as a

network-based service.

This design cycle makes several important contributions to the thesis. First, it advances the

development of high-accuracy transport mode detection models by applying the Extreme

Gradient Boosting (XGBoost) algorithm, directly addressing RQ1. Second, it contributes novel

insights into feature relevance and sensor importance through systematic feature ablation and

aggregation function experiments, supporting RQ2. Third, it demonstrates the adaptability

and generalisability of the approach by developing separate models for both Android and iOS

platforms, which relates to RQ3. The work presented in this cycle forms the basis of Article III

and complements earlier design cycles by refining the artefact to improve accuracy and extend

transport mode coverage.

4.6 Design Cycle 5: Ensemble Feature Ranking Framework

A significant contribution of this thesis is the development of a generic framework for feature

evaluation and reduction (EFR-TMD), designed to identify the most relevant features for

transport mode detection using mobile sensor data (Article IV). Throughout this research

period, feature importance has been consistently assessed and analysed. Insights from previous

design cycles highlighted the need for a more structured approach to feature evaluation and

reduction.

Given that this framework represents a novel artefact aimed at addressing the overarching

problem, this cycle was initiated with an objective-centred approach (Figure 3.2). In the

second design cycle, an initial ensemble approach was tested, and the approach yielded positive

results. In the third design cycle, an ablation approach was employed. While the model

trained using this method achieved high accuracy, the feature importance experiments yielded

inconclusive results. To address the limited conclusiveness of the ablation study, the ensemble

approach explored in the second design cycle was revisited and refined. The goal of the fifth

design cycle was therefore to enhance the ensemble method into a robust, generic framework

capable of determining feature importance for transport mode detection across various

algorithms. This refined framework built on the insights gained from previous cycles, aims to

improve the adaptability and accuracy of feature selection across different machine learning

algorithms. Figure 4.8 provides a high-level overview of the framework, illustrating the data

flow and integration of the various components.

89



Figure 4.8: High-Level overview of EFR-TMD.

The framework integrates an ensemble of several feature importance techniques, normalises

their output, and calculates the intersection of importance across all outputs to produce an

ordered list of feature importance. The feature importance techniques included in the

ensemble are Permutation Importance (PI), SHapley Additive exPlanations (SHAP), Mutual

Information (MI), Analysis of Variance (ANOVA) f-test, and Classification and Regression

Trees (CART), in addition to the built-in feature importance capabilities of the XGBoost and

Random Forest algorithms. Since each feature importance technique produces results on

different scales and metrics, these relative importance scores were normalised by assigning the

feature with the highest importance score in each technique a value of one, while the feature

with the lowest score was assigned a value equivalent to the total number of features. The

normalised results were then intersected across all feature importance techniques to generate

ranked lists of the most important sensors, aggregation functions, and their combinations.

Despite its simplicity, this framework effectively analyses the importance of both sensors and

aggregation functions using data from Android and iOS devices. All sensors included in the

NOR-TMD dataset were utilised, with their data aggregated using each of the statistical

functions listed in Table 4.8. Figures 4.9 and 4.10 show the results in terms of sensors when

applying the NOR-TMD dataset to the EFR-TMD framework for data derived from Android

and iOS devices, respectively. A lower score indicates higher importance for the given sensor.
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Table 4.8: Statistical aggregations applied to each sensor.

Aggregation Function Description

Minimum Smallest value in the segment
Maximum Largest value in the segment
Average Mean value in the segment
Range Difference between maximum and minimum
Variance Variability in the segment
Standard Deviation Dispersion around the mean
Kurtosis Measure of data distribution shape
1st Quartile 25th percentile of the data
2nd Quartile (Median) 50th percentile of the data
3rd Quartile 75th percentile of the data
Interquartile Range Range between 1st and 3rd quartiles

Figure 4.9: Rank of each Android sen-
sor across all feature importance methods
based on NOR-TMD.

Figure 4.10: Rank of each iOS sensor across
all feature importance methods based on
NOR-TMD.

The Android sensors with the highest average rankings across all importance techniques

include the accelerometer, pressure sensor, and magnetic field sensor. These three sensors are

also identified as the most important on iOS, although their relative rankings differ slightly.

The sensor rankings exhibit a significant range, indicating consistency among the techniques

within the EFR-TMD framework in identifying the highest-ranked sensors. This suggests that

the identified top sensors are likely to be the most applicable for transport mode detection. In

contrast, a narrower range with closer rankings would imply greater variability across the

techniques, potentially indicating a more arbitrary ranking. Although the range of importance

scores is narrower for iOS sensors due to the smaller number of sensors available on iOS, the

results still exhibit significant variability, further confirming the applicability of the top-ranked

sensors.

Additionally, the EFR-TMD framework was employed to identify the most applicable

aggregation functions. Figures 4.11 and 4.12 display the ranking of various popular statistical

aggregation functions from the literature based on Android and iOS data, respectively. The

importance of the aggregation functions varies more between Android and iOS. For Android
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data, the most significant aggregation functions are range, interquartile range, and standard

deviation, whereas for iOS, the 1st quartile, minimum, and interquartile range are identified as

the most important aggregation functions. The importance of the various aggregation

functions on Android data shows relatively less variability, with the notable exception of

kurtosis, which is identified as the least applicable aggregation function for transport mode

detection. On iOS, however, there is greater variability, particularly in terms of the sensors

identified as the two most important functions: the 1st quartile and minimum.

Figure 4.11: Average rank of each sensor
across all feature importance methods using
the iOS dataset.

Figure 4.12: Average rank of each function
across all feature importance methods using
the iOS dataset.

To assess the generalisability of the findings from the feature importance evaluation across

multiple algorithms, five commonly used algorithms for transport mode detection were

employed: Convolutional Neural Network (CNN), Long-Short-Term Memory (LSTM),

Multilayer Perceptron (MLP), XGBoost (XGB), and Random Forest (RF). The behaviour of

the models in terms of accuracy, training time, inference time, and model size was observed as

the bottom 25% of sensors and aggregation functions based on their importance scores were

iteratively removed. This approach enabled an evaluation of the transferability of the results

across different algorithms and provided insights into accuracy changes associated with the

removal of specific sensors and functions. Table 4.9 presents the model performance results,

showing the accuracy progression from models trained with all features to those trained using

only the top 25% of features.
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Table 4.9: Sensor and function ranking evaluation.

Algorithm # Features
Inference
Time (ms)

Training
Time (m)

Model
Size (MB)

Accuracy (%)

Android

CNN (100%) 121 55.56 5.38 0.37 93.47
CNN (75%) 81 45.96 4.59 0.26 93.43
CNN (50%) 36 46.65 3.65 0.13 90.60
CNN (25%) 9 45.31 2.80 0.13 80.31

LSTM (100%) 121 47.32 69.36 0.08 93.77
LSTM (75%) 81 48.24 46.55 0.08 93.74
LSTM (50%) 36 47.58 21.25 0.08 93.84
LSTM (25%) 9 46.45 8.34 0.08 82.78

MLP (100%) 121 47.03 3.19 0.07 93.03
MLP (75%) 81 45.63 3.19 0.06 93.94
MLP (50%) 36 46.02 2.92 0.04 90.92
MLP (25%) 9 46.24 2.54 0.03 80.63

RF (100%) 121 9.34 1.15 45.53 96.55
RF (75%) 81 8.86 0.83 44.93 96.78
RF (50%) 36 8.23 0.57 58.01 95.13
RF (25%) 9 7.63 0.27 119.23 83.20

XGB (100%) 121 1.21 0.48 1.8 98.28
XGB (75%) 81 1.20 0.32 1.8 98.28
XGB (50%) 36 0.98 0.14 1.96 97.42
XGB (25%) 9 0.66 0.05 2.37 84.10

iOS

CNN (100%) 77 48.64 9.35 0.25 77.49
CNN (75%) 54 52.89 8.78 0.18 79.11
CNN (50%) 24 49.47 7.73 0.09 76.73
CNN (25%) 6 46.7 6.32 0.09 67.09

LSTM (100%) 77 53.86 113.13 0.08 81.38
LSTM (75%) 54 54.26 163.2 0.08 87.77
LSTM (50%) 24 50.07 41.1 0.08 81.35
LSTM (25%) 6 46.67 16.02 0.08 72.28

MLP (100%) 77 51.22 7.37 0.06 79.51
MLP (75%) 54 51.69 7 0.05 77.14
MLP (50%) 24 48.49 6.46 0.04 76.59
MLP (25%) 6 44.94 6.37 0.03 67.07

RF (100%) 77 9.29 1.85 199.36 90.54
RF (75%) 54 8.57 1.63 212.99 89.08
RF (50%) 24 8.16 0.88 231.59 88.72
RF (25%) 6 7.69 0.42 348.03 81.76

XGB (100%) 77 1.3 0.62 2.72 93.06
XGB (75%) 54 1.4 0.53 2.71 91.11
XGB (50%) 24 1.12 0.24 2.63 89.47
XGB (25%) 6 0.81 0.1 2.56 78.5

Across the five algorithms, removing the bottom 25% of features resulted in negligible or no

change in model accuracy. This indicates that the least important sensors and aggregation
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functions have limited relevance for transport mode detection. For the Android dataset, these

features include the game rotation vector and linear acceleration sensors, along with the

variance and kurtosis functions. On iOS, the least informative features are the gravity sensor

and the average and kurtosis functions. Extending the removal to the bottom 50% of features

also resulted in minimal accuracy loss across all models. On Android, this required excluding

additional features such as the geomagnetic rotation vector, gravity sensor, uncalibrated

gyroscope, and the second quartile, maximum, and mean functions. On iOS, this extended

removal encompassed the following sensors: attitude quaternion and rotation rate, in addition

to the maximum, range, and variance functions. Significant accuracy reduction occurred when

retaining only the top 25% of features, likely due to the removal of critical sensors like the

gyroscope on Android, and both the pressure and gyroscope sensors on iOS. The consistent

accuracy reduction across the five algorithms suggests that the results of this feature ranking

approach are both generalisable and transferable across different classes of algorithms.

Figure 4.13: Top 30 most important composite
sensors Android.

Figure 4.14: Top 30 most important composite
sensors iOS.

As demonstrated in Table 4.9, it is possible to remove the bottom half of sensors and

aggregation functions identified by the EFR-TMD framework while maintaining comparable

accuracy. This consistency across all models highlights the robustness of the EFR-TMD
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framework in identifying universally important features for transport mode detection.

Table 4.10: Feature ranking evaluation results.

Algorithm # Features
Inference
Time (ms)

Training
Time (m)

Model
Size (MB)

Accuracy (%)

Android

CNN (100%) 121 55.56 5.38 0.37 93.47
CNN (75%) 91 49.25 4.37 0.29 94.5
CNN (50%) 61 52.17 4.38 0.2 92.63
CNN (25%) 31 49.64 3.22 0.2 90.17

LSTM (100%) 121 47.32 69.36 0.08 93.77
LSTM (75%) 91 59.03 58.75 0.08 90.17
LSTM (50%) 61 52.34 41.07 0.08 91.19
LSTM (25%) 31 50.15 20.6 0.08 90.25

MLP (100%) 121 47.03 3.19 0.07 93.03
MLP (75%) 91 55.26 3.19 0.06 94.15
MLP (50%) 61 50.66 2.93 0.05 92.5
MLP (25%) 31 47.7 2.66 0.04 90.27

RF (100%) 121 9.34 1.15 45.5 96.55
RF (75%) 91 8.87 0.86 45.66 96.57
RF (50%) 61 8.34 0.66 49.18 96.16
RF (25%) 31 7.9 0.45 56.65 95.41

XGB (100%) 121 1.21 0.48 1.8 98.28
XGB (75%) 91 1.56 0.42 1.79 98.33
XGB (50%) 61 2.35 0.57 1.84 98.1
XGB (25%) 31 0.71 0.1 2.02 97.16

iOS

CNN (100%) 77 48.64 9.35 0.25 77.49
CNN (75%) 58 53.97 9.37 0.19 78.15
CNN (50%) 39 50.65 8.38 0.13 78.81
CNN (25%) 20 43.43 6.74 0.13 77.31

LSTM (100%) 77 53.86 113.13 0.08 81.38
LSTM (75%) 58 56.8 88.93 0.08 82.4
LSTM (50%) 39 49.49 62.6 0.08 83.24
LSTM (25%) 20 43.42 31.41 0.08 80.6

MLP (100%) 77 51.22 7.37 0.06 79.51
MLP (75%) 58 53.41 7.37 0.05 78.55
MLP (50%) 39 46.25 7.37 0.04 77.96
MLP (25%) 20 43.54 5.91 0.03 76.76

RF (100%) 77 9.29 1.85 199.36 90.54
RF (75%) 58 8.7 1.59 203.7 89.87
RF (50%) 39 8.14 1.33 213.84 88.8
RF (25%) 20 7.73 0.83 227.14 89.08

XGB (100%) 77 1.3 0.62 2.72 93.06
XGB (75%) 58 1.42 0.56 2.7 92.35
XGB (50%) 39 1.18 0.33 2.68 90.79
XGB (25%) 20 0.83 0.17 2.63 88.86

Additionally, reducing features significantly decreases both training and inference times. The
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impact of feature reduction on model size depends on the algorithm. LSTMs maintain the

same size regardless of feature dimensionality because their model complexity is driven by

hidden units and layers rather than input size. In contrast, tree-based models like RF and

XGBoost may increase in size as they compensate for fewer features by creating deeper or

more complex trees. Neural networks such as CNNs and MLPs, however, exhibit consistent

model size reduction when features are removed. To better understand the role of sensors and

aggregation functions, the importance of features consisting of sensor data aggregated using

specific functions (e.g., average acceleration or interquartile range of magnetic field values) were

ranked. Figures 4.13 and 4.14 showcase the 30 most important composite features identified by

EFR-TMD, where lower scores indicate higher importance. Table 4.10 further demonstrates

the negligible impact on accuracy when the least relevant composite features are iteratively

removed. This consistent behaviour across models reinforces the robustness of the EFR-TMD

framework, showing that the least important features consistently have minimal relevance.

By ranking features holistically, EFR-TMD enables the removal of up to 75% of the

lowest-ranked features with only minor drops in accuracy. This effectively reduces model

dimensionality while preserving performance. The reduced dimensionality not only accelerates

training and inference but also results in smaller models for certain neural network

architectures, enhancing their suitability for deployment on resource-constrained devices.

These findings were further validated through the development of a platform-agnostic

framework for transport mode detection (Article V). By relying exclusively on the intersection

of the top-ranked sensors and aggregation functions identified by EFR-TMD, and being

validated in real-life scenarios, the framework provides further evidence of the method’s

practical relevance and robustness in identifying critical features, simplifying models, and

improving computational efficiency.

This design cycle represents a pivotal advancement in addressing RQ2 and RQ3 by

establishing a robust, model-agnostic feature evaluation and reduction framework that directly

enhances the accuracy and efficiency of transport mode detection models. The EFR-TMD

framework, developed and refined during this cycle, is comprehensively presented in Article IV

and serves as a cornerstone for achieving lightweight, real-time inference crucial for on-device

deployment, as further explored in Article V. By systematically identifying and prioritising the

most relevant features, this cycle significantly contributes to the thesis’s core contributions.

Namely, the introduction of the EFR-TMD framework and the optimisation of transport mode
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detection models for practical, platform-agnostic mobile applications. Collectively, the work in

this cycle not only advances theoretical understanding but also delivers tangible improvements

in model generalisability, computational efficiency, and deployment readiness, thus making a

critical contribution towards answering the overarching RQ0.

4.7 Design Cycle 6: Platform-Agnostic Framework for Local

Transport Mode Detection

The aggregated results from the preceding design cycles provided the foundation for the sixth

and final design cycle of this research. Building on the results derived from the EFR-TMD

framework, as well as previous experimentation with multilayer perceptrons, this research

introduces a lightweight, platform-agnostic framework designed for local transport mode

detection, aimed at providing a privacy-preserving solution adaptable to diverse mobile

platforms. Since the goal of this cycle was to design, deploy, and evaluate a lightweight,

platform-agnostic framework, it adopted a design- and development-centred approach

(Figure 3.2). From the results of the importance evaluation conducted in the previous design

cycle it became evident that the most applicable sensors for transport mode detection were

consistently effective across both Android and iOS devices. This finding, coupled with the

ability to reduce the feature set substantially while preserving accuracy, prompted an

investigation into the feasibility of a streamlined, platform-agnostic model for on-device

transport mode detection (Article V).

Based on the previous experimentation, a Multilayer Perceptron (MLP) model was developed

to infer transportation modes on both platforms, implemented and tested in real-life conditions

on public transportation vehicles. The model was configured to classify transport modes

including bus, metro, train, tram, and alternative modes (ALTM), with ALTM serving to

differentiate public transport from other modes such as bicycle, e-scooter, boat, and car,

equivalent to the previously mentioned other mode. Figures 4.15 and 4.16 present confusion

matrices, while Table 4.11 displays the classification report derived from both simulated and

real-life evaluations across Android and iOS devices.
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Figure 4.15: Confusion matrix of real-life ex-
periment on Android devices.

Figure 4.16: Confusion matrix of real-life ex-
periment on iOS devices.

Class Precision Recall F1-Score Support

Android iOS Android iOS Android iOS Android iOS

Holdout set

BUS 0.92 0.97 0.86 0.82 0.89 0.89 97846 116187
METRO 0.95 0.82 0.82 0.85 0.88 0.84 51346 24784
ALTM 0.93 0.86 0.86 0.86 0.89 0.86 59951 40960
TRAIN 0.35 0.53 0.89 0.86 0.51 0.66 5932 14742
TRAM 0.48 0.47 0.76 0.79 0.59 0.59 13300 11358

Accuracy 0.85 0.83 228375 208031

Real-life Experiment

BUS 0.60 0.93 0.78 0.89 0.68 0.90 954 1036
METRO 0.57 0.60 0.92 0.86 0.70 0.71 451 306
ALTM 0.89 1.00 0.97 0.84 0.92 0.91 271 176
TRAIN 0.63 0.60 0.34 0.11 0.44 0.18 981 509
TRAM 0.60 0.37 0.49 0.65 0.54 0.47 833 482

Accuracy 0.62 0.67 3490 2509

Table 4.11: Classification reports simulated vs. real-life experiment.

As illustrated, performance on the holdout set was significantly higher than in real-life tests,

which suggests the possibility of overfitting, despite the extensive measures taken to mitigate

it, as detailed in Chapter 3. Nevertheless, the objective of this cycle was not solely to

maximise accuracy, but also to validate the feasibility of achieving comparable performance

across multiple platforms with a single model configuration. The classification report shows

that the model achieved similar results on both Android and iOS devices, suggesting a high

degree of platform-agnostic compatibility. Beyond cross-platform consistency, a major

objective of this cycle was to develop a compact, efficient model suitable for

resource-constrained mobile devices.
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Figure 4.17: Inference time distribution across all devices.

Previous experiments demonstrated that dimensionality reduction could substantially decrease

inference time, so the feature set was reduced to optimise speed and energy efficiency without

compromising critical functionality. Figure 4.17 displays the inference time distribution across

different devices, while Figure 4.18 compares inference times across transport modes. On

Android devices, the average inference time was 5.31 milliseconds (ms), ranging from under 1

ms to 74 ms. For iOS devices, the average inference time was 2.05 ms, with a range from under

1 ms to 68 ms.

Figure 4.18: Inference time distribution across all modes.

Notably, while overall accuracy in a real-life context was lower than in controlled testing,

misclassifications between public transportation modes and alternative modes (ALTM) were

minimal. If all public transportation classes are grouped together, the model achieves a 99%

accuracy rate in distinguishing between public and non-public transport modes. This high

level of accuracy in identifying public transportation holds promise for applications such as

automated ticketing, where accurately detecting whether a user is on board public transport

vehicles is paramount.
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Energy consumption is also of high importance when developing solutions tailored to mobile

devices. While robust energy measurements were challenging, it was possible to gauge

estimated energy consumption on Android devices using the Android Debug Bridge (ADB).

Results indicated a low energy footprint for the model, with an estimated consumption range

of 0.83% to 2.79% per hour during active testing. Given the similarity in model architecture

and processing requirements across platforms, it is likely that this low energy impact observed

on Android would similarly apply to iOS devices. The model’s lightweight design, along with

its minimal energy requirements, supports its suitability for extended, real-life use on mobile

devices without imposing significant battery strain, making it a practical and efficient artefact

for local transport mode detection.

This final design cycle demonstrates the practical deployment and real-world applicability of

the research outcomes, directly addressing RQ0 and RQ3. Documented in Article V, the

platform-agnostic framework validates the theoretical advances from previous cycles,

particularly the effectiveness of the EFR-TMD feature reduction framework and optimised

machine learning models, in operational mobile environments. The successful local deployment

on both Android and iOS devices highlights the feasibility of real-time, low-latency transport

mode detection with minimal energy overhead, fulfilling key contributions related to

platform-agnostic, efficient, and generalisable on-device detection.
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Chapter 5

Discussion

This chapter critically discusses the design artefacts developed in this research within the

context of transport mode detection (TMD). Guided by the Design Science Research (DSR)

paradigm, the study adopted an iterative process of designing, implementing, and evaluating

solutions to address key challenges in TMD research. The primary gaps identified in the

literature relate to the absence of benchmark datasets and standardised methods for feature

selection and evaluation. Furthermore, while accuracy remains a central focus in TMD, it must

increasingly be considered alongside computational efficiency and the feasibility of on-device

inference. In addition, very few studies have investigated iOS data, possibly due to the lack of

publicly available datasets containing such data. Finally, the cross-platform capabilities of

on-device TMD remain largely unexplored. To address these challenges systematically, the

following overarching research question was formulated to guide the design and evaluation of

the artefacts developed in this study:

RQ0: How can efficient on-device, platform-agnostic transport mode detection be achieved on

mobile devices?

To address distinct aspects of the overarching research aim, the following supporting questions

were also explored:

RQ1: How can machine learning models achieve high accuracy in transport mode detection

across diverse transport modes, ensuring generalisability in real-life applications?

RQ2: How can a standardised framework for feature evaluation and reduction systematically

identify relevant features, ensuring consistency and enabling reliable feature reduction

across machine learning models?
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RQ3: How can transport mode detection models be optimised for real-time, low-latency

inference while maintaining computational efficiency on mobile devices?

These research questions are addressed through the integrated outcomes of the various

contributions that comprise this thesis. This research introduces high-accuracy machine

learning models (Article II and Article III), presents a systematic framework for feature

evaluation and reduction (Article IV), and culminates in the development of a deployable,

platform-agnostic TMD framework (Article V). In addition, Article IV makes a significant

dataset contribution to the research community through the release of NOR-TMD, thereby

addressing a long-standing limitation in the field.

These contributions were developed and disseminated through five articles, each addressing

distinct stages of the research process. Article I established the initial problem context by

surveying existing Automated Fare Collection (AFC) systems, with the findings motivating a

shift in focus towards TMD as an enabling component of AFC solutions. Article II explored

the feasibility of developing models for TMD using the NOR-TMD dataset, while Article III

concentrated on designing accurate and generalisable machine learning models for transport

mode classification. Building upon the findings of Article II and Article III, Article IV

introduced the EFR-TMD framework, an ensemble-based approach for feature evaluation and

reduction. It also presented the comprehensive real-world dataset (NOR-TMD), which forms

the foundation for all models developed in this thesis. Finally, Article V detailed the

implementation of a lightweight, platform-agnostic framework for real-time, on-device

inference, which was evaluated under real-life conditions using mobile devices on board various

public transport vehicles. Throughout this chapter, each thematic discussion will reference the

relevant article(s) underpinning the findings, clarifying and reiterating how the individual

contributions integrate to answer the overarching research questions of this thesis.

This chapter provides a comprehensive discussion of the findings of this research. It begins by

examining the development of high-accuracy transport mode detection models (Article III).

The discussion then turns to the dataset introduced in this research (Article IV), highlighting

its unique contributions and situating it in comparison with existing publicly available

datasets. Subsequently, the proposed framework for feature evaluation and reduction (Article

II and Article IV) is discussed, with particular emphasis on its role in standardising feature

selection and enhancing computational efficiency. Finally, the chapter evaluates the

development of the platform-agnostic framework, focusing on its optimisation strategies and
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performance in real-time, on-device inference settings (Article V). By situating these

contributions within the broader context of existing research, this chapter demonstrates how

the findings of this thesis advance the field of TMD, addressing critical challenges related to

data availability, methodological consistency, and practical application.

5.1 High-Accuracy Transport Mode Detection

This research has iteratively sought to enhance computational efficiency while simultaneously

incorporating a wider range of transportation modalities (Articles II-V), all while maintaining

high classification accuracy. In alignment with the research questions posed in this thesis, an

experiment was conducted to determine the highest level of accuracy achievable for transport

mode detection, with a particular emphasis on integrating a broad spectrum of modes (Article

III). Given the promising results reported in the literature for gradient-boosted trees [57],

[151], [174], the XGBoost algorithm was selected for this purpose.

5.1.1 Extreme Gradient Boosting

By leveraging the full breadth of available features, this thesis achieved classification accuracies

of 98.91% and 98.03% for Android and iOS data, respectively. To the best of current

knowledge, the high-accuracy gradient-boosted models presented in this thesis (Article III)

surpass existing approaches in transport mode detection. For instance, Nirmal, Disanayaka,

Haputhanthri, et al. [57] achieved an accuracy of 94% despite incorporating only three

transport modes: bus, train, and other. Additionally, their approach relied on GPS data,

which is known to be highly energy-intensive [60], [77], [123] and raises privacy concerns [66],

especially as their solution required remote processing on a centralised server.

Similarly, Aziz, Youkee, Ahmed, et al. [80] proposed an ensemble of different boosting

algorithms, employing a majority voting mechanism to determine the final classification

outcome. This approach expanded the approach of Nirmal, Disanayaka, Haputhanthri, et al.

[57] by including five transportation modes while maintaining a similar accuracy (94%). The

use of multiple models also significantly increases computational requirements.

Likewise, Lu, Pinaroc, Lv, et al. [151] attained an accuracy of approximately 94% when

classifying between eight transport modes using only inertial sensor data. The models

presented in this thesis, however, distinguish between eight (iOS) and nine (Android, including
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electric scooters) transport modes. Nevertheless, direct comparisons are challenging due to

methodological differences; Lu, Pinaroc, Lv, et al. [151] employed frequency-domain features,

whereas this thesis exclusively utilised time-domain features. Furthermore, while both studies

classify a similar number of modes, the specific categories differ substantially. This thesis

focuses on vehicular transportation, whereas Lu, Pinaroc, Lv, et al. [151] included human

activities such as walking and running but omitted key transport modes such as trams and

boats.

The accuracy achieved in this thesis, using XGBoost (Article III), reinforce existing evidence

that XGBoost outperforms other commonly used algorithms, including random forests,

decision trees, support vector machines, and multilayer perceptrons [57], [174]. The models

developed in this thesis achieved high accuracies for both Android and iOS, placing them

among the most accurate transport mode detection models to date, particularly considering

the extensive range of transportation modes included.

Regardless of algorithmic or methodological approach, previous studies have typically achieved

high accuracy but with a narrower selection of transport modes [14], [56], [75], [138], [143],

[154]. This research distinguishes itself by accurately classifying a broader range of transport

modes, including those rarely studied, such as trams and seagoing vessels. Most prior work in

this domain, including approaches utilising neural networks and traditional classifiers, limits

the number of classified modes, inherently reducing their practical applicability. By extending

the range of recognised transport modes to include public transportation types such as trams

and boats, this thesis addresses a key limitation in prior transport mode detection research,

thereby offering a more holistic understanding of urban mobility. Furthermore, based on the

reviewed literature, no other study has achieved comparable levels of accuracy using data

collected from iOS devices.

5.1.2 Platform-Specific Model Development

Although this thesis strives to achieve platform-agnostic on-device transport mode detection,

the findings related to the development of gradient boosted models (Article III) highlights the

value of leveraging platform-specific data to optimise model performance. The decision to train

separate models for Android and iOS was driven by the significant differences in hardware and

sensor configurations across these platforms [48], [185]. The results demonstrate that transport
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mode detection can benefit from platform-specific modelling, as this approach captures

nuances in sensor performance and data characteristics unique to each operating system. This

differentiation between Android and iOS sensors, with their inherent variability, likely

contributed to models that more effectively generalise across a diverse range of devices within

each platform.

5.1.3 Practical Applications and Industry Integration

The high accuracy achieved by both models highlights their potential utility across a variety of

practical applications, including automated fare collection (AFC), real-time public

transportation analytics, and contextual user interfaces capable of adapting dynamically based

on transport mode. Given that neural networks are predominantly the only models natively

supported on mobile devices, models based on algorithms such as XGBoost are currently

better suited for centralised implementations. The strong performance of the models for both

Android and iOS data highlights their technological maturity and underscores their potential

for integration into industry-level solutions aimed at enhancing the modelling of travel

patterns and behaviours. Such integration could enable public transport operators,

municipalities, and other stakeholders to make well-informed decisions regarding infrastructure

expansion, route optimisation, and related initiatives.

5.1.4 Replacing Manual Surveys with Automated Detection

Understanding travel behaviours, travel demand, and the impact of transportation

infrastructure on individuals is fundamental to transportation science. Traditionally, this type

of data has been collected through travel surveys or diaries, where users report their travel

motivations and modes of transportation. Methods such as face-to-face interviews,

mail-out/mail-back paper diaries, phone interviews, and web forms have been commonly

employed for this purpose [101]. However, automated transport mode detection (TMD)

solutions offer a more efficient means of collecting this information, potentially reducing the

need for resource-intensive, manual data collection methods. By implementing the high

accuracy models presented in this thesis within a centralised architecture, there is no

requirement for additional on-board equipment to infer the mode of transportation. Instead, a

traveller’s device could continuously stream sensor data, allowing public transport operators to

determine the mode of travel in real-time. Additionally, the incorporation of GPS data,
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correlated with real-time public transport operator systems, could serve as a foundation for

automated fare collection [14]. This research also demonstrates that XGBoost offers

significantly lower inference times compared to alternative approaches, such as neural

networks. Consequently, XGBoost may be particularly advantageous in centralised

deployments, where its faster inference capabilities can free up computational resources more

efficiently, thereby enabling a significantly greater number of classifications per time unit.

5.1.5 Limitations

While this contribution presents numerous benefits, it is also accompanied by challenges and

limitations. The most significant limitation in the context of this research is the lack of native

support for gradient boosted models on mobile devices, which inhibits the possibility of running

them locally. Although centralised deployment offers distinct advantages from the perspective

of public transport operators, there are notable downsides for travellers, particularly

concerning privacy. A centralised architecture necessitates the continuous streaming of highly

granular data about the user’s movements and environment to public transport operators. If

misused, this data could potentially reveal sensitive information about a traveller’s health,

habits, relationships, and other private details. For this reason, an important goal is to achieve

on-device inference, thereby ensuring that data remains securely on the traveller’s device.

Another limitation related to privacy is the inclusion of audio data. Audio data can be

perceived as highly invasive, which is why mobile operating systems require explicit user

permissions to enable software to access and record events from the microphone. This

requirement complicates the application’s usability and diminishes its pervasiveness, as

travellers would need to actively interact with the application for it to function effectively.

Furthermore, travellers may reasonably question why a public transportation solution would

require access to the microphone, potentially leading to resistance in adopting the system.

Moreover, energy consumption was not investigated in relation to this approach (Article III).

The choice of sensors has a significant influence on energy consumption [50]. In particular,

activating the microphone has been found to consume considerably more energy compared to

sensors like the accelerometer, which are known for their lower energy requirements [225],

[226]. Although the models are not executed directly on the traveller’s device, the use of the

microphone, alongside continuous data transmission to a centralised system, could result in a
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considerable energy consumption. That being said, there are measures that can be

implemented in order to mitigate this. For instance, data can be exchanged with the server in

a more opportunistic way and the application can ”piggyback” on other applications using

already collected data to reduce the energy consumption [56].

A further limitation is that, while these models were evaluated using real-life data, they were

not implemented or tested in an actual real-life setting. As demonstrated in this thesis and in

previous studies [37], [56], the results obtained from real-life evaluations are often significantly

worse compared to those derived under controlled simulated conditions. Therefore, the lack of

real-life implementation presents a challenge to understanding the full practical potential of

the proposed models. That being said, the results presented in this thesis help clarify which

machine learning strategies are most effective in achieving high accuracy for transport mode

detection across a broad range of transportation modes.

5.2 A Diverse and Representative Dataset for Mobility Research

This research introduces the NOR-TMD dataset (Article IV) as a design artefact, developed

through the DSR process to provide a comprehensive and representative resource for mobility

research. As a reusable instantiation, the dataset addresses the lack of diversity in existing

resources by incorporating multiple devices, transportation modes, and operating systems,

ensuring its applicability for both academic and industry use. The dataset marks a significant

advancement in addressing the limitations of existing resources for transport mode detection

(TMD).

Table 5.1: Overview of publicly available sensor-based datasets. N.M = Number of
modes. N.S = Number of sensors. N.DL = Number of device placements during data collection.
N.UD = Number of unique devices. N.UP = Number of unique participants.

Dataset N.M N.S OS N.DL N.UD N.UP Hours

HTC 9 3 Android N/A 1 224 8311h

SHL 8 16 Android 4 1 3 2812h

US-TMD 5 8 Android N/A 11 13 31h

Collecty 8 4 Android N/A N/A 15 242h

NOR-TMD 10 13 Android, iOS 3 57 101 609h
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Table 5.2: Overview over publicly available sensor-based datasets

Dataset Modes Sensors Placement

HTC [123] Still, Walk, Run,
Bike, Motorcycle,
Car, Bus, Metro,

Train

Accelerometer,
Magnetometer, Gyroscope

N/A

SHL [183] Still, Walk, Run,
Bike, Car, Bus,
Metro, Train

Accelerometer,
Magnetometer, Gyroscope,
Orientation, Gravity, Linear

acceleration, Ambient
pressure, Google’s activity
recognition API, Ambient
light, Battery level and
temperature, Satellite

reception, WiFi reception,
Mobile phone cell reception,

GPS, Audio

Hand, Hips,
Torso, Backpack

US-TMD [72] Still, Walk, Car,
Bus, Train

Accelerometer,
Magnetometer, Gyroscope,
Gravity, Ambient light,
Ambient pressure, Audio,

Proximity

N/A

Collecty [184] Walk, Run, Bike,
Car, Bus, Train,
Tram, E-scooter

Accelerometer,
Magnetometer, Gyroscope,

Linear acceleration

N/A

NOR-TMD Bike, Metro,
Train, Tram, Bus,

Boat, Car,
E-scooter, Inside,

Outside

Accelerometer,
Magnetometer, Uncalibrated
magnetometer, Gyroscope,
Uncalibrated gyroscope,
Rotation vector, Game
rotation vector, Rotation
rate, Gravity, Quaternion,

Linear acceleration, Ambient
pressure, Built-in activity

recognition

Hand, Pocket,
Other

Notably, NOR-TMD excels in incorporating diversity across multiple dimensions, including

devices, participants, geographical regions, device placements, platforms, sensors, and

transportation modes, thereby providing a robust foundation for advancing TMD research.

The NOR-TMD dataset represents a substantial advancement in addressing the limitations of

existing resources for transport mode detection. A review of the literature identified only four

publicly available datasets containing sensor data collected from various modes of
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transportation: the HTC dataset [123], the SHL dataset [183], the US-TMD dataset [72], and

the Collecty dataset [184]. While each of these datasets offers valuable contributions, they also

exhibit notable limitations. Tables 5.1 and 5.2 provides detailed comparisons of the key

features of these four datasets alongside the proposed NOR-TMD dataset, highlighting its

enhanced capabilities and broader scope.

5.2.1 Inclusion of iOS and Sensor Diversity

A significant contribution of the NOR-TMD dataset is the inclusion of sensor data collected

from iOS devices. This feature distinguishes it from other datasets, which do not incorporate

iOS data, possibly explaining why most related studies on transport mode detection have

focused on Android platforms. This presents a substantial challenge, as iOS devices constitute

a considerable share of the global mobile market [50] and developing practical and widely

applicable solutions necessitates the inclusion of iOS data. The NOR-TMD dataset

encompasses the most extensive range of smartphone sensors, incorporating all standard

sensors available on both Android and iOS operating systems. While NOR-TMD includes a

wider spectrum of motion and ambient sensor diversity by incorporating uncalibrated versions

of sensors, as well as iOS sensors, the SHL dataset [183] includes additional data types, such as

location data, ambient light, satellite reception, audio, battery level, and battery temperature.

Although data on ambient light, battery status, location, and audio was initially collected,

these were excluded from the final dataset. Ambient light and battery information were

omitted due to the lack of a clear relationship with transport mode detection. While prior

work demonstrates the effectiveness of location data in transport mode detection [114]–[118],

location data is not the primary focus of this research due to factors such as its high energy

consumption [60], [77], [123] and privacy concerns [66]. Similarly, while audio data has

demonstrated effectiveness in this context [141], it was not included in NOR-TMD due to

privacy considerations.

In contrast to the NOR-TMD and SHL datasets, others such as HTC [123], US-TMD [72], and

Collecty [184] lack key sensors. The HTC dataset [123], for instance, includes only the

accelerometer, magnetometer, and gyroscope. While these sensors are widely used, in addition

to being identified as highly relevant for transport mode detection by the EFR-TMD

framework proposed in this thesis, the absence of barometer data is a notable limitation. The

barometer has been shown to be highly useful in prior studies [135]–[138] and was identified as
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a critical sensor by EFR-TMD. The omission of barometer data in the HTC dataset can be

attributed to its release in 2014, a time when most smartphones lacked this sensor. This

underscores the need for updated datasets that reflect the sensor capabilities of modern devices.

However, similar to the HTC dataset, the Collecty dataset [184] includes accelerometer,

magnetometer and gyroscope, in addition to linear acceleration data, but it inexplicably omits

the barometer despite the dataset being published as recently as 2023. In contrast, the

US-TMD dataset [72] incorporates a broader set of sensors, including the barometer and audio.

While the SHL dataset [183] remains the most diverse in terms of data types, as it includes

location and network data, the NOR-TMD dataset stands out as the most comprehensive

dataset in terms of inertial sensor diversity. Its inclusion of iOS sensor data and broader sensor

coverage underscores its contribution as a valuable resource for advancing transport mode

detection research.

5.2.2 Transport Mode Coverage

Another critical aspect of these datasets, is the availability of transportation modes, as these

directly influence the ability to classify and differentiate between different modes of

transportation. Due to the lack of ground truth data many studies are focused on

easy-to-detect modes [46] and the absence of benchmark datasets hinders comparisons of

results [80]. Most of the datasets exhibit a decent variety of modes, with the exception of

US-TMD [72], which only includes buses and trains as motorised modes. The Collecty dataset

[184] expands this by including trams and electric scooters. Although the SHL dataset [183]

and the HTC dataset [123] does not include trams, both datasets instead incorporate the

modes car and metro. The HTC dataset [123] also includes motorcycles, making it the only

dataset to feature this mode. The NOR-TMD dataset includes all the motorised modes

present in the other datasets, with the exception of motorcycles, while adding seagoing vessels,

which are an integral part of public transport in many countries [62].

As this research focuses on public transportation solutions, modes such as being still, walking,

or running were excluded. Instead, a different, less granular approach was adopted,

categorising modes as simply being inside or outside. These categories serve as useful

differentiators for classifying various transportation modes. Considering the context of

automated fare collection (AFC) solutions as an example, it is not as critical to distinguish
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whether a person is still, walking, or running. Instead, it is more important to discern whether

a traveller is located within a specific mode of transportation and, therefore, subject to fare

collection, or outside of a vehicle, where fare collection does not apply. While activities such as

being still, walking, or running are important in the realm of activity recognition, they hold

less relevance in the context of transport mode detection, particularly when focusing on public

transportation. Among the datasets, NOR-TMD stands out as the most diverse in terms of

public transportation modes. It incorporates all such modes from other datasets and uniquely

includes data collected aboard ferries, making it the only dataset to offer this mode of

transportation.

5.2.3 Participant, Device, and Placement Diversity

Another key factor is the diversity of participants and devices used to collect the dataset, as

well as its size. The HTC dataset [123] has the largest number of participants, with 224 unique

individuals collecting 8,311 hours of data. However, all participants utilised the same device

for data collection, which poses significant challenges, as sensor data quality and variability

differ across devices due to differences in hardware, operating systems, and

manufacturer-specific sensor implementations [48], [185]. Similar to the HTC dataset [123], the

SHL dataset [183] is also large in size but was collected by only three participants using the

same device model. The US-TMD dataset [72] and the Collecty dataset [184] involve a larger

number of unique participants, and while the US-TMD dataset [72] was collected using 11

unique devices, the authors of the Collecty dataset [184] do not specify the uniqueness of their

devices, stating only that the 15 participants in their study used their personal devices for

data collection. Device diversity is an important factor, as it enhances the dataset’s

generalisability [189], enabling robust transport mode detection models that can perform

across a variety of hardware and software configurations.

Furthermore, participant diversity is also crucial, as different travellers exhibit distinct travel

behaviours and patterns, which can vary significantly based on demographics [186] and

individual habits [188]. In real-life scenarios, users interact with their devices in various ways,

such as holding them in their hands, placing them in a pocket, or storing them in a bag. These

different placements significantly influence sensor readings [61], [143]. Consequently, labelling

the location of the device during data collection can provide valuable contextual information.

Apart from the NOR-TMD dataset, the SHL dataset is the only other dataset that includes
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device location information during data collection. The SHL dataset provides four labels for

device placement, whereas the NOR-TMD dataset offers three. During the collection of the

SHL dataset Gjoreski, Ciliberto, Wang, et al. [183] adopted a highly controlled data collection

protocol, ensuring that devices were only positioned in specific, predefined locations. While

this strict methodology is reasonable, it could be argued that a more flexible approach, such as

that used in the NOR-TMD dataset, may yield data that better reflects real-life usage as it is

exceedingly challenging to systematically capture all possible device placements. The

NOR-TMD dataset incorporates an ”other” label, allowing participants to place devices in

unconventional locations, such as backpacks, purses, or even the centre console of a car while

driving. This approach potentially results in more diverse data, which may improve

classification accuracy in real-life applications where users are likely to store devices in a

variety of locations. In contrast, solutions developed using the SHL dataset may struggle to

accurately classify modes of transportation when devices are stored in locations outside those

specifically included in their controlled study.

5.2.4 Geographical Diversity

Lastly, geographical diversity is an important factor, as distinct travel patterns and behaviours

can vary across regions [187]. While none of the discussed datasets include a large variety of

geographical locations for data collection, some are less diverse in this regard than others. The

HTC dataset exhibits limited geographical diversity, as it was collected from only two distinct

roadways. In contrast, the SHL dataset encompasses a broader geographical range, primarily

spanning from Brighton, UK, to London, UK. The study by Erdelić, Erdelić, and Carić [184]

does not specify the devices used, or the geographical locations from which the Collecty

dataset was obtained. Similarly, Carpineti, Lomonaco, Bedogni, et al. [72] provides no details

regarding the geographical locations of the data collection which resulted in the US-TMD

dataset. The NOR-TMD dataset includes data collected from two cities in Norway. While this

is similar to the SHL dataset, the two geographical areas differ significantly. The SHL dataset

covers regions in close proximity to one another, whereas the two cities in the NOR-TMD

dataset, Oslo and Bodø, Norway, are much farther apart. Consequently, the NOR-TMD

dataset can be considered more geographically diverse than the SHL dataset.
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5.2.5 Limitations

Despite its strengths, the NOR-TMD dataset presents certain challenges that should be

addressed in future research. One notable issue is the imbalance across users, devices, and

transport modes. This imbalance poses challenges related to bias and the risk of overfitting,

which must be carefully addressed depending on the specific use case of the dataset. During

data collection, the primary objective was to obtain a comprehensive volume of data while

ensuring that participants adhered to their regular travel behaviours, to curate a representative

dataset. An alternative approach might have involved selecting participants specifically based

on their travel behaviour and devices, to ensure a more balanced representation across

transport modes and devices. However, such an approach would have been difficult to achieve

practically, as all interested participants were invited to participate in the study. While the

outside and inside labels provide useful contextual information, a more granular approach

could enhance classification granularity. Initially, these labels were intended to separate

outdoor transport modes, such as cycling or using an electrical scooter, from simply just being

outside, as well as differentiate between being inside a building versus being inside a transport

vehicle. While the outside and inside categories provided useful contextual information, a more

granular set of labels might have enhanced the dataset’s utility further. For example,

differentiating activities such as walking inside versus walking outside or sitting inside versus

sitting outside could offer a richer, more nuanced understanding of participant behaviour.

Moreover, using more detailed labels would facilitate better comparison with existing datasets

and potentially allow for a more seamless integration with other available datasets, thus

enhancing the dataset’s overall applicability and generalisability. A further limitation is related

to the issue of irregular sampling frequencies, which can have large impacts on the accuracy

and efficiency of solutions for TMD [166]. The sensor data was collected using the native

frameworks of the operating systems, with sensors being triggered based on changes, which

resulted in non-uniform sampling intervals. This approach provided a detailed and dynamic

representation of sensor variations, capturing fine-grained changes as they occurred. However,

this also led to variability in the number of sensor events within each segment of data.

Consequently, during both training and real-life implementation, the number of sensor data

points per segment may differ from those used during the original model training phase. Such

irregularity could potentially impact model performance, as models may not receive consistent

volumes of input data across different scenarios, thus affecting reliability and robustness. This

challenge points to the need for careful consideration of data preprocessing techniques, such as
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interpolation or segment standardisation, to mitigate the effects of variable sampling rates on

model outcomes. Nevertheless, this dataset represents a significant contribution towards

addressing all the research questions posed in this thesis, as it provides a foundational basis for

developing comprehensive answers to these inquiries.

5.3 Feature Importance and Reduction for Transport Mode De-

tection

A key focus of this thesis was the development of a standardised framework for feature

evaluation and reduction for transport mode detection research (Article IV). To this end, this

thesis introduces the EFR-TMD framework (Ensemble Feature Ranking for Transport Mode

Detection) as a prescriptive design artefact, developed through iterative Design Science

Research (DSR) cycles (Article II and Article IV). EFR-TMD combines multiple feature

selection techniques in an ensemble approach to produce consistent and interpretable rankings

of feature importance across a range of machine learning models. By improving the robustness

and transferability across an array of different algorithms, the framework supports more

efficient TMD model development, contributing to ongoing efforts to establish and validate

methodological standards in the field [45]. While designed specifically for TMD and evaluated

within that context, the general principles underlying EFR-TMD may also be adaptable to

other domains with similar feature selection challenges.

While the literature is converging on many preprocessing steps for preparing and analysing

smartphone data for transport mode detection solutions, building to a large degree on

practises from human activity recognition [59], the literature does not seem to agree on which

features are the most applicable in this context. Features used in transport mode detection

solutions mainly consists of sensor data aggregated or transformed using established

mathematical functions from statistics or signal processing and given the wide array of sensors

modern smartphones are equipped with, this leads to a wide array of options when selecting

and extracting features. Investigating the literature holistically, nearly all combinations have

been explored, although not systematically and very fragmented. This makes it difficult to

pinpoint which features are most suited for new researchers in the field or practitioners seeking

to build solutions based on the current state of the art in transport mode detection, leading to

a large variation of utilised features. As a result, it becomes difficult to evaluate and compare

different algorithmic approaches presented in the literature [80], as the features used influence
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the performance of the proposed solutions and overshadows the impact of other novel

contributions relating to architectures, algorithms, or processing techniques.

5.3.1 EFR-TMD: A Robust Ensemble-Based Approach

Existing approaches to feature extraction and selection often rely on experimentation, domain

expertise, or intuition [57], [85], [135]. Some studies employ ablation analysis, where a model is

trained on the full feature set, and features are systematically removed until a significant drop

in accuracy is observed [60]. Other studies employ sequential forward selection (SFS) which

operates in the opposite manner, starting with an empty feature set and iteratively adding

features until further additions fail to improve accuracy [54]. However, methods that

iteratively add or remove features are limited in their generalisability, as they typically indicate

the relevance of features for a specific algorithm but do not necessarily translate well to other

contexts or algorithms. Estimating the importance of features in machine learning is currently

very unreliable [178] as the different methods can yield very different results, even when

applied on the same dataset [175]. Previous work argues that selecting features based on

intuition or domain knowledge can sometimes achieve results comparable to those obtained

through formal feature selection methods [82]. However, this reliance on intuition and domain

knowledge attests more to the lack of reliable feature importance approaches than suggesting

that selecting features based on domain knowledge is a better approach.

To address this challenge this research presents an ensemble approach that combine various

methods, normalise the output and provide a more general importance score across the

incorporated techniques. Although simplistic, the framework has been thoroughly evaluated

across the most popular algorithmic approaches for transport mode detection (Tables 4.9 and

4.10). The results of the evaluation clearly demonstrates that removing the features deemed

less applicable by EFR-TMD does not lead to a loss of accuracy. On the contrary, in some

cases a slight accuracy increase can be observed, further highlighting the capabilities of the

framework to identify features that are not applicable in the context of transport mode

detection. Furthermore, the evaluation results exhibit remarkable consistency across very

different algorithmic approaches which attests to the generalisability of the framework and

indicates that the results of the feature importance can be seen as generic.

115



5.3.2 Insights from Sensor and Aggregation Function Evaluation

Based on the feature importance results, average importance scores were computed for

individual sensors and aggregation functions. The EFR-TMD framework aggregates the

outputs of several feature importance methods, and the distribution of scores across features

provides insight into the level of agreement among these methods. A wide range of scores,

where some features receive consistently high rankings and others receive consistently low

rankings, indicates that the methods agree on which features are more or less important. This

agreement results in a clearer separation between important and unimportant features. In

contrast, when the scores for all features are relatively similar, it suggests that the methods

disagree, with some ranking a feature highly and others ranking it poorly. These conflicting

evaluations tend to average out, which reduces the ability of the framework to reliably

distinguish between features. Therefore, a broader range of importance scores implies stronger

consensus and increased confidence in the resulting rankings.

Using the EFR-TMD approach, the most applicable sensors for transport mode detection

across both operating systems were identified as the accelerometer, the magnetometer, and the

barometer (Figures 4.9 and 4.10). The range of importance scores across sensors is sufficiently

wide, indicating a clear distinction between the most and least relevant sensors. This suggests

that the top-ranked sensors, including the accelerometer, magnetometer, and barometer, are

consistently identified as important across multiple techniques within the ensemble framework.

This finding is consistent with prior research, where the inclusion of these sensors has been

shown to yield strong performance in transport mode detection [60], [85], [135]. These sensors

have not only demonstrated practical applicability, but there are also clear reasons grounded in

domain knowledge that support their use. For instance, acceleration and deceleration patterns

tend to be consistent within the same transportation mode [60]. The magnetometer captures

changes in the magnetic field that are influenced by the vehicle’s structure [85]. In addition,

the pressure sensor is sensitive enough to detect subtle road irregularities, which can help

distinguish between different modes of transportation [135]. To the best of current

understanding, there are no attempts at systematically evaluating the applicability of

smartphone sensors in the context of transport mode detection and the feature evaluation

results thus reinforces the current indication as to which sensors are more applicable in this

context. Furthermore, the fact that the proposed framework (Article IV) identified sensors

that already have proven utility in previous research further attests to the utility of this

framework. These results also makes the possibilities of developing cross-platform solutions for
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Android and iOS explicit as the same top-ranked sensors were identified as the most applicable

across both operating systems.

For aggregation functions (Figures 4.11 and 4.12), the overall range of importance scores is

relatively narrow. This limited spread reduces the reliability of the function ranking results.

However, there are some notable exceptions. For example, the kurtosis function on Android

data is consistently ranked significantly lower than other functions, indicating limited

applicability for transport mode detection. Furthermore, the difference in scores between the

range function and both the variance and average functions is considerable. This suggests that,

in general, variance and average are less informative in this context. In contrast, the results

derived from iOS data display a broader spread in importance scores, which indicates a clearer

distinction among the functions and suggests that the most highly ranked functions are more

effective when applied to features derived from iOS.

Looking at the results of the ranking of composite features (Figures 4.13 and 4.14), it is

evident that different functions are more applicable given specific sensors. For instance, while

the range function is deemed the most applicable aggregation function for magnetic field data

derived from Android devices, the interquartile range function is deemed the most important

function for acceleration data. Similarly, based on data from iOS devices, the minimum

function is considered the most important function for acceleration, while the 1st quartile is

deemed the most important function for magnetic field data. It is difficult to target the exact

cause of this discrepancy, however one potential explanation can be attested to differences in

hardware and sensor implementations between the two operating systems [48], [185]. For

instance, accelerometers on Android measure in meters per second squared (m/s2), while iOS

devices use gravitational increments. These discrepancies can influence aggregation function

effectiveness, as seen in the higher importance of quartile-based functions for iOS data.

Another possible explanation is differences in sampling frequencies, as a lower frequency leads

to less values being aggregated within each segment, which in turn leads to lower accuracies of

classifiers [166]. During data collection a sampling frequency of 5 Hz (every 200 ms) was

defined. However due to variations in operating system resource management, hardware

differences, and the operating system’s sensor prioritisation, the actual sampling frequency

varied. Many previous studies prioritise maximising sampling frequency over ensuring a

consistent sampling rate [94], [147]. Similarly, in this research, a high sampling frequency was
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prioritised to maximise data collection, rather than maintaining consistency across operating

systems. Furthermore, in order to address class imbalances the data was re-sampled using

SMOTE [170], which might further have contributed to this discrepancy.

5.3.3 Implications for Model Performance and Sustainability

The development of a framework for feature importance and dimensionality reduction also

have direct implications for practitioners seeking to deploy transport mode detection systems.

By systematically identifying the most critical features, EFR-TMD provides a structured

approach to feature reduction, potentially improving classification performance [153] and

enabling models to operate more efficiently. The results presented in this research indicate that

up to 75% of commonly used features in the literature can be eliminated while still

maintaining a reasonable level of accuracy. This dimensionality reduction can lead to increased

learning accuracy and improving comprehensibility [172], in addition to reducing inference

time, which is a key element in practical applications [196].

The inference time can be tied to the size of the model [131] and as a reduction in features

leads to a significant decrease in model size [177], [181], it can also lead to a reduction in

inference time. Feature reduction strategies, such as those enabled by EFR-TMD, are critical

in addressing the rising energy demands of machine learning models, as prior studies have

shown that reducing dataset size and complexity can lead to a 23–99% decrease in energy

consumption and carbon emissions without compromising accuracy [174]. Furthermore, there

are potential memory savings when removing features from neural networks [177]. Note that a

reduction of features does not always lead to smaller models. The model size of long

short-term memories is mainly dependent on its architecture and not the number of features.

Similarly, the model size of tree-based algorithms is generally unaffected [177]. However,

tree-based algorithms, such as Random Forest and XGBoost, may increase in size when

subjected to feature reduction. This observation is in line with prior findings that suggest

adopting simpler models over complex, highly parameterised models can significantly reduce

energy consumption while maintaining comparable accuracy, reinforcing the importance of

structured feature selection in sustainable machine learning practices [174]. Tree-based

algorithms tend to compensate for the lack of discriminative power by creating a more complex

tree structure. As the size of the tree-based algorithms are increasing as features are removed

one could argue that the features being removed contains important information that is useful
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to discern the mode of transportation. While features deemed less important could still

contribute to the classification, this could be a result of the initial benchmark model being

overfitted and by reducing the number of features the model must instead focus on different,

more applicable patterns.

Feature reduction also contributes to significantly decrease training time of up to 80%, which

frees up computational resources, speeding up analysis and development, and in turn

contribute to energy savings [174], [180]. Beyond performance metrics, adopting responsible

machine learning practices is crucial in transport mode detection, particularly in

energy-constrained environments such as mobile devices. Studies indicate that the energy

footprint of machine learning is often overlooked, yet conscious selection of features and

models can reduce unnecessary computational overhead, contributing to more sustainable

deployment [174].

5.3.4 Limitations

While EFR-TMD have demonstrated several benefits, it is worth noting its limitations as well.

First of all, while the framework has been evaluated using the NOR-TMD dataset, its

performance on datasets with differing characteristics has yet to be investigated. While

EFR-TMD was tested across a wide array of commonly used algorithms, it does not

encompass all possible models, raising the possibility that results may vary when applied to

substantially different algorithms.

Another limitation is the scope of features considered during the identification of applicable

sensors and aggregation functions for transport mode detection. While data from all common

smartphone sensors was considered, the evaluation included only features derived from the time

domain. Had frequency domain features been incorporated, the results might have differed.

That being said, transforming features to the frequency domain is highly energy consuming

[128], which in turn reduce the applicability of the solution for resource-constrained devices.

Another aspect is the sizes of the windows used for segregating the data. Windows with

10-second windows with a 5-second overlap were employed while evaluating EFR-TMD. While

this was well-founded in previous research [14], [73], [121], [191], during consecutive

experiments it was discovered that reducing the overlap of the segments further improved the
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accuracy and robustness of the models. As such, a different configurations could potentially

had influenced evaluation results of EFR-TMD.

Furthermore, advanced processing techniques, such as smoothing, were not applied. Data

derived from different sensors often require tailored processing methods, however the goal of

this evaluation was to assess all features in a generic and consistent manner. Consequently,

sensor-specific preprocessing was not employed and introducing appropriate processing

techniques for each sensor type could potentially alter the observed importance of individual

sensors and provide further insights into their relative contributions.

Despite room for improvement, this thesis have presented a standardised framework for feature

evaluation and reduction, able to systematically and consistently identify relevant features

across multiple machine learning algorithms. This in turn enables efficient dimensionality

reduction, improving computational efficiency.

5.4 Platform-Agnostic Framework for Local Transport Mode

Detection

The main research question posed in this thesis was to investigate how an efficient, on-device,

and platform-agnostic transport mode detection framework can be developed for real-time

inference on mobile devices. Building on insights derived from the evaluation of smartphone

sensors, aggregation functions, and iterative experimentation with various algorithmic

approaches (Articles II-IV), this research presents an instantiation of a platform-agnostic

transport mode detection framework (Article V), evaluated within the DSR paradigm. To the

best of current knowledge, the only comparable solution is EdgeTrans [56], which employs a

tree-based classifier to classify transportation modes across both Android and iOS, in contrast

to the neural network utilised in this research. A platform-agnostic approach offers several

benefits. First, it enables the use of the same model across multiple platforms, meaning only

one model needs to be trained for applications intended to support various platforms. Since

training machine learning models requires substantial computational resources and energy

expenditure [180], eliminating the need for multiple models can yield significant energy

savings. Furthermore, employing a single model ensures consistent behaviour across devices

and operating systems. Evaluation results using a holdout set of unseen data (Table 4.11)

demonstrate consistent performance and reasonable accuracy across both operating systems.
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5.4.1 On-Device Inference

The fact that the platform-agnostic framework operates fully on-device also comes with several

benefits compared to studies based on remote architectures. A major concern with remote

transport mode detection is that sensitive data is stored centrally. While this concern has

traditionally been mostly related to location data [66], it also applies to inertial sensor data

[67]. Although less precise than location data, accelerometer data can still be used to identify

individuals, determine their home and work locations, and even infer religious or political

affiliations [67]. As such, a key advantage of local transport mode detection is that no sensitive

data needs to leave the device.

Moreover, as data does not need to travel to a centralised solution, there is no added latency

beyond that imposed by the window size and inference time [65]. Since Wi-Fi is also highly

energy-consuming [65], eliminating continuous data transfer further contributes to overall

energy savings. Additionally, centralised solutions must maintain a network connection for

data transmission and receiving predictions, which can be challenging in underground public

transport systems, where connectivity is often unreliable [202]. Furthermore, evaluations in

this thesis, as well as in previous works [14], [56], indicate that local transport mode detection

can be performed efficiently without significant energy consumption. Thus, achieving

high-performing local transport mode detection offers a more privacy-preserving alternative to

centralised approaches while also reducing latency, ultimately improving user experience.

5.4.2 Evaluation of Performance, Efficiency, and Energy Consumption

The framework was evaluated across multiple devices and operating systems, reinforcing its

applicability in real-life Intelligent Transportation Systems while ensuring compliance with key

constraints such as energy efficiency, inference time, and user privacy. The proposed solution

demonstrates significantly faster inference times compared to other approaches. While

Ferreira, Zavgorodnii, and Veiga [56] does not specify their model’s inference time, the

proposed system requires between 30 to 120 seconds in order to make a classification. The

platform-agnostic framework proposed in this thesis requires only 15 seconds, in addition to

the inference time required by the model to classify the processed data. As such, the

platform-agnostic framework introduced in this research is able to make a classification with

similar performance between 100% and 700% faster than previous work [56]. Compared to

other studies, which report inference times ranging from 32 ms to 292 ms [14], this framework

achieves an average inference time of 5.31 ms on Android and 2.05 ms on iOS. A significant
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variation in inference time was observed across devices (Figure 4.17), which can be attributed

to differences in hardware and software. However, a notable relationship was also observed

between inference time and problematic modalities, with train classification exhibiting both

the longest inference time and the greatest classification difficulty.

Another advantage of the proposed framework is its significantly reduced model size.

According to EFR-TMD results (Tables 4.9 and 4.10), a multilayer perceptron results in a

model size that is over 5000 times smaller than a random forest classifier, utilised by Ferreira,

Zavgorodnii, and Veiga [56], making it more suitable for resource-constrained devices. Despite

the reduced model complexity, the framework maintains competitive classification accuracy

and supports a wider range of public transportation modalities compared to Ferreira,

Zavgorodnii, and Veiga [56]. Additionally, the reduced window size of 15 seconds improves

inference time, resource consumption, and model efficiency [73], making the framework

particularly well-suited for real-time applications.

Similar to previous work [14], [56], [64], the energy consumption of Android devices running

the proposed framework was assessed. Using the Android Debug Bridge (ADB), energy

consumption was estimated to be between 0.83% and 2.79% per hour. These measurements

align with the reported energy consumption in Ferreira, Zavgorodnii, and Veiga [56] and

Kamalian and Ferreira [64]. However, unlike prior studies, the energy consumption estimates

in this research include the screen being continuously on. Given that screen usage accounts for

most of the energy consumed, the proposed framework likely offers an even more

energy-efficient solution than that of Ferreira, Zavgorodnii, and Veiga [56]. However, these

remain rough estimates, as battery behaviour is influenced by factors such as temperature and

system load [204]. Interestingly, a correlation was observed between inference time and energy

expenditure, where the device with the fastest inference time also exhibited the highest energy

consumption. Conversely, the device with the slowest inference time had the lowest energy

usage, suggesting that inference speed directly impacts power consumption.

5.4.3 Limitations

Despite the advantages of the lightweight platform-agnostic framework, certain limitations

must be acknowledged. The real-life assessment reveals less consistent performance for specific

transport modes, particularly on Android devices, which underperform compared to iOS
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devices in real-life settings. Several factors may contribute to this discrepancy. Notably, the

participants in the real-life evaluation were not part of the original data collection, which was

an intentional design choice to assess generalisation to new users. However, variations in how

users interact with their devices can influence sensor readings [61], [143]. While participants

were instructed to hold their devices consistently, the sensitivity of smartphone sensors [85],

[135] and individual user habits [188] may have introduced variability not present in the

training data. If user behaviour significantly affected sensor readings, one would expect similar

discrepancies on iOS devices, which were not observed. A more likely explanation is the

greater consistency in hardware and sensor placement in iOS devices, as opposed to Android

devices, which exhibit significant variability across manufacturers. Among the tested devices

(Table 3.3), only one of the devices employed in the evaluation was included in the original

data collection, and the lack of data from other devices could contribute to Android’s

suboptimal performance.

Furthermore, classification accuracy for train and tram modes was lower across both operating

systems. This performance gap is likely due to the limited amount of training data available

for these specific modes, as indicated by the strong correlation between classifier performance

and dataset size (Article V). Previous studies incorporating rail-based transport modes have

also reported suboptimal results, even in controlled simulated environments [60], [126], [131],

[143]. Many studies have responded to this challenge by excluding certain rail-based modes

[74], [124], [127], [128], [130], [134], [140] or by reducing modal granularity, such as grouping all

rail-based transportation [94] or even all motorised transportation [129]. Additionally, while

reducing the feature set and window size improves efficiency, it may also contribute to the

decreased performance observed for specific transport modes. Although discrepancies exist

between simulated and real-life settings, the proposed framework presents a scalable,

privacy-conscious, and energy-efficient alternative for on-device transport mode detection.
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Chapter 6

Conclusion

This thesis systematically investigated key challenges in transport mode detection (TMD)

through the lens of the Design Science Research (DSR) paradigm, leading to the development

of multiple artefacts that addressed critical limitations within the field. The overarching

research question of this thesis explored how efficient, on-device, platform-agnostic transport

mode detection could be achieved on mobile devices. Addressing this objective involved

multiple considerations, which led to three supporting research questions.

The first supporting question focused on predictive accuracy, specifically examining the

challenge of achieving high accuracy across diverse modes of transportation. This issue was

investigated iteratively through multiple cycles of design and refinement of machine learning

models. While algorithm selection and configuration played a crucial role in predictive

performance, a diverse dataset and extracted features proved to be the decisive factors in

improving accuracy across a broad spectrum of transportation modes. However, no

standardised methodologies existed for identifying and extracting the most relevant features.

Consequently, the second supporting research question investigated how a standardised

framework for feature evaluation and reduction could systematically identify relevant features

by determining the most informative sensors. Consistent with previous findings, singular

feature estimation techniques failed to reliably identify important features across different

algorithms when applied to the same dataset. To address this limitation, this thesis proposed

an ensemble feature-ranking approach. This approach was evaluated across a broad range of

machine learning algorithms applicable to transport mode detection, demonstrating consistent

results. The findings suggested that the absence of standardised feature evaluation

methodologies could be mitigated through ensembles of existing techniques.
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As the overarching research question encompassed on-device, platform-agnostic transport

mode detection, the third supporting research question examined how machine learning models

could be optimised for real-time, low-latency inference while maintaining computational

efficiency on mobile devices. This question was addressed through investigations into feature

reduction in combination with real-world evaluations. By identifying the most relevant

features and eliminating redundant or irrelevant ones, both model size and inference time were

significantly reduced, facilitating deployment on mobile devices. The research activities

conducted in this thesis considered both Android and iOS platforms, individually and

collectively, to develop platform-agnostic models. The solution to the platform-agnostic

component of the overarching research question lay in normalising sensor data from both

platforms and ensuring that data processing accounted for platform-specific differences.

Through real-world testing, this thesis demonstrated that platform-agnostic transport mode

detection on mobile devices was feasible in an efficient manner.

6.1 Summary of Research Questions and Key Findings

This thesis set out to investigate efficient, on-device, platform-agnostic transport mode

detection using mobile devices. To achieve this, one overarching research question and three

supporting research questions were formulated (RQ0–RQ3). Below, each research question is

revisited and answered based on the key findings.

RQ0: How can efficient on-device, platform-agnostic transport mode detection

be achieved on mobile devices?

Answer: Efficient and platform-agnostic transport mode detection is achieved through an

integrated approach combining model optimisation (RQ3), robust generalisation across devices

and users (RQ1), and systematic feature reduction (RQ2). By developing models and

evaluation pipelines that operate effectively across Android and iOS devices, and by

demonstrating low-latency on-device performance with minimal energy overhead, the thesis

provides a cohesive solution. The contributions collectively show that centralised cloud-based

architectures can be replaced with efficient, accurate, and real-time on-device alternatives.
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RQ1: How can machine learning models achieve high accuracy in transport

mode detection across diverse transport modes, ensuring generalisability in

real-life applications?

Answer: High accuracy in transport mode detection was achieved using algorithms such as

XGBoost and multilayer perceptrons trained on the NOR-TMD dataset, which includes

real-world sensor data from over 100 participants. These models showed strong performance

on unseen data across diverse transport modes and platforms. While real-life deployment of

the MLP model showed a drop in accuracy compared to holdout tests, it maintained consistent

performance across both Android and iOS platforms. This confirms that generalisable and

robust transport mode detection is feasible, even under the variability of real-world conditions.

RQ2: How can a standardised framework for feature evaluation and reduction

systematically identify relevant features, ensuring consistency and enabling

reliable feature reduction across machine learning models?

Answer: The EFR-TMD framework enables consistent and reliable feature reduction through

a model-agnostic approach that integrates multiple feature importance techniques. By

normalising and aggregating importance scores across these methods, the framework identifies

features that are consistently ranked as relevant, reducing bias from any single technique.

EFR-TMD was validated across both Android and iOS sensor datasets, where key features,

such as accelerometer and pressure sensor data, emerged as consistently important. Its

reliability was further confirmed by applying it to five diverse classifiers. Across models,

removing up to 50% of the lowest-ranked features had minimal impact on accuracy, while

improving inference speed and reducing model size. This confirms that EFR-TMD effectively

preserves informative features while discarding redundant ones, making it a practical and

transferable tool for efficient model development on mobile platforms.

RQ3: How can transport mode detection models be optimised for real-time,

low-latency inference while maintaining computational efficiency on mobile

devices?

Answer: Transport mode detection models can be optimised for real-time, low-latency

inference on mobile devices through a combination of dimensionality reduction, lightweight

model architectures, and platform-agnostic implementation strategies. This research

demonstrated that a reduced feature set, identified via the EFR-TMD framework, enabled a

compact multilayer perceptron (MLP) model to run efficiently on both Android and iOS
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platforms. Real-world testing showed average inference times of 5.31 ms (Android) and 2.05

ms (iOS), with minimal misclassification between public and non-public transport modes. The

model maintained low energy consumption (0.83%–2.79% per hour on Android), indicating

suitability for continuous on-device use. These results confirm that real-time, computationally

efficient transport mode detection is feasible on resource-constrained devices without relying

on external servers, enabling scalable and privacy-preserving deployments.

Together, the answers to RQ1–RQ3 converge to answer the overarching research question

(RQ0), demonstrating a practical, efficient, and generalisable framework for transport mode

detection on mobile devices. This work lays a foundation for scalable deployment of intelligent

transport systems leveraging only the sensors and computation available on users’

smartphones.

6.2 Summary of Contributions

By iteratively designing, implementing, and evaluating solutions to address the aforementioned

research questions, this thesis has made multiple significant contributions. These contributions

have not only advanced theoretical understanding but have also resulted in tangible artefacts

that can be utilised by researchers and practitioners to enhance transport mode detection

(TMD) systems in real-world applications.

NOR-TMD: A Comprehensive Dataset for Transport Mode Detection

A central contribution of this thesis is the NOR-TMD dataset, which enhances the

generalisability and applicability of TMD models by providing a comprehensive and diverse

resource. Unlike previous datasets, which were limited in scope, device diversity, and sensor

coverage, NOR-TMD incorporates data collected across multiple devices, operating systems,

and travel contexts. Notably, it includes iOS sensor data, addressing a critical gap in the field,

as previous datasets predominantly focused on Android-based implementations. By offering a

more diverse dataset with extensive sensor coverage and device placement variations,

NOR-TMD provides a robust foundation for developing accurate and widely applicable TMD

models.

Accurate and Generalisable Transport Mode Classification

Building on this dataset, this thesis introduced high-accuracy transport mode detection models

based on XGBoost, which demonstrated superior classification performance across diverse
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transport modes. The results highlight the effectiveness of gradient boosting approaches,

which outperform traditional classifiers while maintaining efficiency across different device

configurations. However, due to their computational complexity, gradient-boosted models are

better suited for centralised implementations, which, despite their scalability, introduce privacy

concerns related to continuous data transmission.

EFR-TMD: A Framework for Feature Evaluation and Reduction

To further standardise feature selection methodologies, this thesis introduced the EFR-TMD

framework, an ensemble-based feature ranking method that systematically evaluates and

reduces feature sets for TMD models. By aggregating multiple feature selection techniques,

EFR-TMD provides a more reliable and generalisable approach to identifying the most

relevant features for transport mode classification. The framework demonstrated that

significant reductions in feature dimensionality does not compromise classification

performance, leading to greater computational efficiency and lower energy consumption.

Additionally, by confirming the critical role of sensors such as the accelerometer,

magnetometer, and barometer, and ensuring cross-platform consistency, EFR-TMD supports

the development of platform-agnostic TMD solutions.

Lightweight, Platform-Agnostic On-Device Framework

A major practical outcome of this thesis is the development of a lightweight, platform-agnostic

transport mode detection framework designed for on-device inference. Unlike centralised

architectures, which rely on continuous data transmission, this framework operates entirely on

the user’s device, eliminating privacy concerns and reducing energy consumption. Evaluation

results confirmed that this approach maintains competitive classification performance while

significantly improving inference time, making it well suited for real-time applications in

Intelligent Transportation Systems. By leveraging insights from feature importance analysis,

the framework selects only the most relevant features, further enhancing efficiency and

scalability. While challenges remain, particularly in improving classification performance for

trains and trams, the proposed framework represents a substantial advancement in deployable,

privacy-preserving TMD solutions.

6.3 Summary of Limitations

This section provides a summary of the main limitations of the research. It focuses on

challenges related to the dataset, which forms the foundation of all models and frameworks
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developed in this work, as well as limitations specific to the two frameworks presented in the

thesis.

Limitations of the Proposed Dataset

While the NOR-TMD dataset constitutes a valuable and diverse resource for transport mode

detection, it presents several limitations. A key issue is the imbalance across users, devices,

and transport modes, which can introduce bias and increase the risk of overfitting. The

labelling scheme, particularly the inside and outside categorisation, may lack the granularity

needed for fine-grained behaviour analysis. More detailed activity labels could enhance the

dataset’s utility and compatibility with other datasets. Another limitation relates to the

irregular sampling frequency of sensor data. Sensor events were captured using operating

system triggers based on change, leading to inconsistent sampling intervals. This variability

can negatively impact model performance and complicates generalisation across scenarios.

Limitations of the Proposed Frameworks

The EFR-TMD framework was evaluated on the NOR-TMD dataset but has not yet been

validated on datasets with differing characteristics. Its generalisability to datasets with

different user behaviours, devices, or sensor configurations has not been assessed. Only

time-domain features were considered in the feature selection process. Frequency-domain

features, though potentially valuable, were excluded due to their computational and energy

demands, which limits applicability in resource-constrained environments. The choice of

window size and overlap used during evaluation, while grounded in prior work, may have

influenced the results. It was later discovered that reducing the segment overlap improved

model robustness, suggesting that alternative configurations could yield different outcomes.

Additionally, no sensor-specific preprocessing techniques were applied. The decision to

evaluate features in a uniform manner provided consistency but may have obscured the

relative importance of features derived from different sensors.

The platform-agnostic framework evaluated in this thesis demonstrated promising results.

However, real-life testing revealed performance inconsistencies, especially on Android devices.

This discrepancy is likely due to hardware heterogeneity and sensor placement variability

across manufacturers. In contrast, iOS devices displayed more consistent performance, likely

due to greater hardware standardisation. Furthermore, the participants in the real-life

evaluation differed from those in the data collection phase, which was intended to test
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generalisation. Nevertheless, this introduced variability in user-device interaction that may

have affected classification accuracy. Lower classification accuracy was also observed for

rail-based transport modes, attributed to the limited volume of training data for these

categories. This trend aligns with prior studies and indicates a need for more comprehensive

data collection. Finally, while the framework prioritised efficiency through reduced feature sets

and smaller window sizes, these design choices may have impacted performance for certain

transport modes.

6.4 Theoretical Implications

This research contributes to the field of transport mode detection (TMD) by advancing the

theoretical understanding of machine learning applications in mobility research. A key

theoretical contribution is the demonstration of extreme gradient boosting (XGBoost) as a

superior classification method for transport mode inference, reinforcing prior evidence that

tree-based algorithms outperform other traditional approaches such as random forest, decision

trees, and support vector machines. The superior performance of the XGBoost model trained

on platform-specific data compared to other models, including cross-platform approaches

employing different algorithms, suggests that tailoring models or preprocessing pipelines to

specific platform characteristics may help reduce variability caused by heterogeneous hardware

and software configurations. However, due to differences in model architectures, direct

comparisons between platform-specific and cross-platform models remain challenging. This

indicates the potential for future research to explicitly consider platform-dependent sensor

variability to improve the generalisability and real-world applicability of transport mode

detection models.

Furthermore, this research proposes a structured approach to feature evaluation and reduction

(EFR-TMD), addressing a long-standing gap in standardising feature selection methods within

TMD. By integrating multiple feature selection techniques into an ensemble-based framework,

EFR-TMD enhances reproducibility and generalisability across different machine learning

models. This addresses the common practice of selecting features based on intuition or

arbitrary experimentation, providing a systematic methodology for future studies to identify

relevant sensors and extraction techniques. The results indicate that up to 75% of commonly

used features can be eliminated without significantly degrading classification performance,

highlighting the potential for optimising feature selection in mobility-related research.
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Another important theoretical implication is the role of dataset diversity in transport mode

classification. The introduction of the NOR-TMD dataset extends the range of transportation

modes studied in previous research and incorporates sensor data from both Android and iOS

devices, an aspect rarely explored in existing datasets. In addition, the dataset provides a

larger diversity in terms of devices and sensors, compared to existing datasets. This thesis

demonstrates that sensor placement, participant diversity, and device heterogeneity can play

crucial roles in model robustness, providing a foundation for future research on dataset

representativeness in transport mode detection. Notably, models trained on the proposed

NOR-TMD dataset outperform many existing alternatives, suggesting that the dataset’s

diversity may be a key factor contributing to improved generalisability.

Finally, this research contributes to the theoretical understanding of how accuracy,

computational efficiency, and platform compatibility can be addressed simultaneously in

transport mode detection. It demonstrates that a single, lightweight model can perform

consistently across mobile platforms when supported by structured feature selection and

dimensionality reduction. This finding expands the theoretical perspective on mobile sensing

and embedded machine learning by highlighting how streamlined model architectures can

support generalisable behaviour across heterogeneous device environments. The research also

underscores the value of integrating feature selection into the model design process, showing

that reduced input complexity can enhance efficiency while preserving classification accuracy.

These insights contribute to a more nuanced theoretical understanding of how cross-platform

robustness can be achieved through systematic feature selection, preprocessing, and model

design.

6.5 Practical Implications

The findings of this research have significant practical implications for the deployment and

scalability of transport mode detection (TMD) systems in real-life applications. The

development of high-accuracy machine learning models for transport mode detection, capable

of distinguishing between a broad range of transportation modes, has direct applications in

Smart Mobility, public transportation systems, and automated ticketing solutions. The

demonstrated ability to classify transport modes with over 98% accuracy suggests that

Intelligent Transportation Systems (ITS) can leverage such models to improve public transport

monitoring, optimise urban mobility infrastructure, and enhance passenger experiences

through real-time travel insights.
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The platform-agnostic, on-device TMD framework developed in this research introduces a

practical alternative to cloud-based solutions, enabling privacy-preserving, real-time inference

on mobile devices. This is particularly relevant for automated fare collection (AFC) systems,

where transport mode detection can complement traditional ticketing mechanisms by

providing an additional layer of validation for passenger movement. The framework offers a

cost-effective and scalable approach for transit operators seeking to enhance fare validation

systems, with the potential for integration into broader mobility solutions.

Additionally, the research highlights the energy efficiency benefits of feature selection and

model optimisation. By demonstrating that EFR-TMD-based feature reduction can improve

computational efficiency without sacrificing accuracy, this thesis provides actionable insights

for developers designing real-time transport mode detection applications. The reduced

computational overhead translates into lower energy consumption, making the proposed

framework particularly suitable for resource-constrained mobile devices. Moreover, the

research highlights how dimensionality reduction can reduce inference times, which can have

practical implications for real-life solutions.

Finally, from a policy and urban planning perspective, the findings provide a valuable

foundation for transport authorities and policymakers to enhance public transport planning

and infrastructure development. The ability to accurately track and analyse travel patterns can

support evidence-based decision-making on issues such as route optimization, service frequency

adjustments, and urban mobility policies. By integrating transport mode detection into

real-time public transport analytics, city planners can develop data-driven solutions to improve

congestion management, reduce emissions, and enhance multimodal transport systems.

6.6 Directions for Future Research

While this research has made significant strides in advancing transport mode detection, it also

identifies several areas for future exploration. Although the dataset introduced in this thesis

addresses many of the limitations present in existing datasets, the inherent nature of machine

learning dictates that an abundance of diverse and high-quality data is always beneficial.

Simultaneously, the use of disparate datasets across studies complicates direct comparisons

between proposed solutions, hindering the development of standardised benchmarks. As such,
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future efforts should focus on expanding the NOR-TMD dataset and integrating existing

datasets to create a comprehensive and standardised benchmark dataset. Such an initiative

would facilitate more robust comparisons across different methodologies and contribute to the

overall advancement of transport mode detection research.

The framework for feature evaluation and reduction (EFR-TMD), introduced in this thesis,

should be further assessed using additional feature types, particularly frequency-domain

features, to rigorously evaluate its robustness. Similarly, the impact of segment size selection

on the performance of the framework warrants further investigation to determine optimal

configurations. While the ensemble-based approach integrates several commonly used feature

importance techniques, additional research should explore whether alternative techniques

should be incorporated to increase the robustness of the framework. Furthermore, the

applicability of the framework should be assessed in broader contexts, such as human activity

recognition, to determine its generalisability across various domains beyond transport mode

detection.

The platform-agnostic framework developed in this research should be further refined to

address classification challenges related to similar transport modalities. While the framework

demonstrates high energy efficiency and consistency across both Android and iOS devices,

there is clear potential for accuracy improvements, particularly in distinguishing closely related

transport modes. Additionally, expanding the framework to accommodate a wider range of

transport modalities would enhance its practical utility for public transport operators and

other stakeholders. In a real-life deployment scenario, particularly in fully automated fare

collection systems, the framework would need to continuously infer the mode of

transportation, seamlessly detecting when a traveller enters or exits a specific mode. However,

continuous inference is likely to be energy-intensive, necessitating the development of efficient

trigger mechanisms to detect potential transitions between transport modes. Future research

should explore optimal strategies for identifying and leveraging such trigger events, enabling a

more resource-efficient transport mode detection process.

Ultimately, the research presented in this thesis provides a solid foundation for further

advancements in transport mode detection, emphasising the importance of diversity,

methodological rigour, and practical applicability in the development of intelligent

transportation solutions. By addressing persistent challenges related to data availability,
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feature selection, computational efficiency, and platform compatibility, this thesis contributes

to the broader goal of creating scalable, privacy-conscious, and high-performance transport

mode detection systems that can support the next generation of Smart Mobility applications.
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[124] D. Shin, D. Aliaga, B. Tunçer, et al., “Urban sensing: Using smartphones for

transportation mode classification,” Computers, Environment and Urban Systems,

Special Issue on Volunteered Geographic Information, vol. 53, pp. 76–86, Sep. 1, 2015.

[125] V. Manzoni, D. Maniloff, K. Kloeckl, and C. Ratti, “Transportation mode identification

and real-time CO2 emission estimation using smartphones,” SENSEable City Lab,

Massachusetts Institute of Technology, nd, 2010.

[126] S. Wang, C. Chen, and J. Ma, “Accelerometer based transportation mode recognition

on mobile phones,” in 2010 Asia-Pacific Conference on Wearable Computing Systems,

Apr. 2010, pp. 44–46.

[127] S. Lee, J. Lee, and K. Lee, “VehicleSense: A reliable sound-based transportation mode

recognition system for smartphones,” in 2017 IEEE 18th International Symposium on A

World of Wireless, Mobile and Multimedia Networks (WoWMoM), Jun. 2017, pp. 1–9.

[128] H. R. Eftekhari and M. Ghatee, “An inference engine for smartphones to preprocess

data and detect stationary and transportation modes,” Transportation Research Part

C: Emerging Technologies, vol. 69, pp. 313–327, Aug. 1, 2016.

147



[129] H. Xia, Y. Qiao, J. Jian, and Y. Chang, “Using smart phone sensors to detect

transportation modes,” Sensors, vol. 14, no. 11, pp. 20 843–20 865, Nov. 2014.

[130] L. Bedogni, M. Di Felice, and L. Bononi, “Context-aware android applications through

transportation mode detection techniques,” Wireless Communications and Mobile

Computing, vol. 16, no. 16, pp. 2523–2541, 2016.

[131] S.-H. Fang, H.-H. Liao, Y.-X. Fei, et al., “Transportation modes classification using

sensors on smartphones,” Sensors, vol. 16, no. 8, p. 1324, Aug. 2016.

[132] S.-H. Fang, Y.-X. Fei, Z. Xu, and Y. Tsao, “Learning transportation modes from

smartphone sensors based on deep neural network,” IEEE Sensors Journal, vol. 17,

no. 18, pp. 6111–6118, Sep. 2017.

[133] K. Can Cetin, H. Irem Turkmen, and M. Amac Guvensan, “N-gram based transport

mode detection models for energy constrained devices,” in 2021 International

Conference on INnovations in Intelligent SysTems and Applications (INISTA), Aug.

2021, pp. 1–5.

[134] C. Wang, H. Luo, F. Zhao, and Y. Qin, “Combining residual and LSTM recurrent

networks for transportation mode detection using multimodal sensors integrated in

smartphones,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 9,

pp. 5473–5485, Sep. 2021.

[135] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda, M. C. Chan, and L.-S. Peh, “Using

mobile phone barometer for low-power transportation context detection,” in Proceedings

of the 12th ACM Conference on Embedded Network Sensor Systems, ser. SenSys ’14,

New York, NY, USA: Association for Computing Machinery, Nov. 3, 2014, pp. 191–205.

[136] G. Yanyun, Z. Fang, C. Shaomeng, and L. Haiyong, “A convolutional neural networks

based transportation mode identification algorithm,” in 2017 International Conference

on Indoor Positioning and Indoor Navigation (IPIN), Sep. 2017, pp. 1–7.

[137] Y. Qin, H. Luo, F. Zhao, C. Wang, J. Wang, and Y. Zhang, “Toward transportation

mode recognition using deep convolutional and long short-term memory recurrent

neural networks,” IEEE Access, vol. 7, pp. 142 353–142 367, 2019.

[138] I. Drosouli, A. Voulodimos, and G. Miaoulis, “Transportation mode detection using

machine learning techniques on mobile phone sensor data,” in Proceedings of the 13th

ACM International Conference on PErvasive Technologies Related to Assistive

Environments, ser. PETRA ’20, New York, NY, USA: Association for Computing

Machinery, Jun. 30, 2020, pp. 1–8.

148



[139] J. V. Jeyakumar, E. S. Lee, Z. Xia, S. S. Sandha, N. Tausik, and M. Srivastava, “Deep

convolutional bidirectional LSTM based transportation mode recognition,” in

Proceedings of the 2018 ACM International Joint Conference and 2018 International

Symposium on Pervasive and Ubiquitous Computing and Wearable Computers,

ser. UbiComp ’18, New York, NY, USA: Association for Computing Machinery, Oct. 8,

2018, pp. 1606–1615.

[140] S. Kumar, A. Damaraju, A. Kumar, S. Kumari, and C.-M. Chen, “LSTM network for

transportation mode detection,” Journal of Internet Technology, vol. 22, no. 4,

pp. 891–902, Jul. 1, 2021.

[141] L. Wang and D. Roggen, “Sound-based transportation mode recognition with

smartphones,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), May 2019, pp. 930–934.

[142] S. Reddy, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Determining

transportation mode on mobile phones,” in 2008 12th IEEE International Symposium

on Wearable Computers, Sep. 2008, pp. 25–28.

[143] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using mobile

phones to determine transportation modes,” ACM Trans. Sen. Netw., vol. 6, no. 2,

13:1–13:27, Mar. 2, 2010.

[144] R. C. Shah, C.-y. Wan, H. Lu, and L. Nachman, “Classifying the mode of

transportation on mobile phones using GIS information,” in Proceedings of the 2014

ACM International Joint Conference on Pervasive and Ubiquitous Computing,

ser. UbiComp ’14, New York, NY, USA: Association for Computing Machinery, Sep. 13,

2014, pp. 225–229.

[145] M. Kamalian, A. Taherkordi, A. H. Payberah, and P. Ferreira, “FogFLeeT: Fog-level

federated transfer learning for adaptive transport mode detection,” in 2024 IEEE

International Conference on Cloud Engineering (IC2E), Sep. 2024, pp. 22–33.

[146] M. Kamalian, A. Taherkordi, and P. Ferreira, “TeLeGaIT: Transfer learning on fog for

generalizable and real-time transport mode detection,” in 2024 9th International

Conference on Fog and Mobile Edge Computing (FMEC), Sep. 2024, pp. 196–203.

[147] H. I. Ashqar, M. H. Almannaa, M. Elhenawy, H. A. Rakha, and L. House, “Smartphone

transportation mode recognition using a hierarchical machine learning classifier and

pooled features from time and frequency domains,” IEEE Transactions on Intelligent

Transportation Systems, vol. 20, no. 1, pp. 244–252, Jan. 2019.

149



[148] R. Saravanan and P. Sujatha, “A state of art techniques on machine learning

algorithms: A perspective of supervised learning approaches in data classification,” in

2018 Second International Conference on Intelligent Computing and Control Systems

(ICICCS), Jun. 2018, pp. 945–949.
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[202] T. Stockx, B. Hecht, and J. Schöning, “SubwayPS: Towards smartphone positioning in

underground public transportation systems,” in Proceedings of the 22nd ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems, ser. SIGSPATIAL ’14, New York, NY, USA: Association for Computing

Machinery, Nov. 2014, pp. 93–102.

[203] S. Dhar, J. Guo, J. ( Liu, S. Tripathi, U. Kurup, and M. Shah, “A survey of on-device

machine learning: An algorithms and learning theory perspective,” ACM Transactions

on Internet of Things, vol. 2, no. 3, 15:1–15:49, Jul. 8, 2021.

[204] A. McIntosh, S. Hassan, and A. Hindle, “What can android mobile app developers do

about the energy consumption of machine learning?” Empirical Software Engineering,

vol. 24, no. 2, pp. 562–601, Apr. 1, 2019.

[205] X. Liu, “GLMLP-TRANS: A transportation mode detection model using lightweight

sensors integrated in smartphones,” Computer Communications, vol. 194, pp. 156–166,

Oct. 1, 2022.

[206] D. Coskun, O. D. Incel, and A. Ozgovde, “Phone position/placement detection using

accelerometer: Impact on activity recognition,” in 2015 IEEE Tenth International

Conference on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP), Apr. 2015, pp. 1–6.

[207] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information

systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004.

[208] Y. S. Park, L. Konge, and A. R. J. Artino, “The positivism paradigm of research,”

Academic Medicine, vol. 95, no. 5, p. 690, May 2020.

[209] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science

research methodology for information systems research,” Journal of Management

Information Systems, vol. 24, no. 3, pp. 45–77, Dec. 1, 2007.

[210] S. T. March and G. F. Smith, “Design and natural science research on information

technology,” Decision Support Systems, vol. 15, no. 4, pp. 251–266, Dec. 1, 1995.

155



[211] A. R. Hevner, “A three cycle view of design science research,” Scandinavian journal of

information systems, vol. 19, no. 2, p. 4, 2007.

[212] J. Venable, J. Pries-Heje, and R. Baskerville, “FEDS: A framework for evaluation in

design science research,” European Journal of Information Systems, vol. 25, no. 1,

pp. 77–89, Jan. 1, 2016.
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Abstract

Establishing the context of users of mobile
applications is essential to provide the users with relevant
information and functionality associated with the user’s
location or situation. Context aware solutions adapt
its behaviour to fit the situation the user is situated in
by making certain information or functions available.
They are applicable to most kinds of modern systems;
public transportation systems are no exception. To
achieve intelligent transportation, it is vital to determine
contextual information related to travelers, such as which
vehicle is currently used and where the travelers boarded
or disembarked. This contributes towards more seamless
public transport ticketing and provides public transport
operators with enriched data. In this paper, we suggest
an approach, using machine learning, to determine a
traveler’s mode of transport using mobile sensor data
from the traveler’s smartphone. The trained machine
learning models can infer the mode of transport with
high accuracy using off-the-shelf technology.

Keywords: machine learning, mobile, activity

recognition, XGBoost, sensors, public transport, vehicle

mode detection

1. Introduction

Lately, context awareness has become an important

topic when designing most digital solutions, especially

when it comes to mobile solutions. Since mobile

users are inherently mobile, the environment where

they are located is ever-changing and in that sense

so is also the context of which they are situated in.

Context awareness can be split into three different groups.

Namely, computing context, user context and physical

context (Liu et al., 2011). The different types of contexts

can contribute to solving or improving different types

of problems. For instance, by correctly establishing a

computing context we can improve performance related

to computing, such as waiting on available resources, for

instance memory or bandwidth before starting a resource

intensive process – e.g. a heavy IA task – in the mobile

device or a nearby Edge server (Hirsch et al., 2021).

The user context, on the other hand, is more related to

the user’s geographical location and what and whom

are nearby. A system with Bluetooth capabilities could

for instance establish, through scanning, that people

are nearby and as such start a chat or a game with

people nearby. Lastly, physical context is more related

to physical variables around the user such as lighting,

temperature and so forth. With context aware capabilities,

mobile phones might increase or decrease its screen

lighting based on the amount of natural lighting or change

the content of the screen depending on whether the user

holds the phone in portrait or landscape mode. In regards

to physical context, by sensing the user’s surroundings

and the movement of a user’s device, we can detect a

user’s type of physical activity or the type of location

where the user is currently situated, such as within a

house or a car. Solutions can in turn build on this to

offer context specific functions. For instance, if a user

is driving a car the smartphone might limit itself to only

accept voice commands instead of touch input to increase

safety. However, in order for systems to act and adapt

based on the context we need to be able to quantify what

distinguishes the different contexts, in addition to be able

to infer context(s) changes.

Today, most mobile devices possess activity

recognition capabilities. Activity recognition can be used

in a wide variety of systems, such as fitness tracking, fall

detection, health monitoring and so on (Lockhart et al.,

2012). Activity recognition is, in essence, a built-in

solution to establish a user’s physical context, although

at the moment most activity recognition solutions are

fairly limited. Both Android and iOS smartphones

have embedded functionality to infer whether a user

is walking, running, bicycling and even if the user

is situated in a vehicle. While these built-in activity

recognition solutions are improving, more specific

functionality, such as recognizing the type of vehicle,

is still lacking. Most of the existing activity recognition

solutions are based on machine learning (Shoaib et al.,
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2015) and to classify a user’s context we can take

advantage of sensor data available through mobile

phones (Oplenskedal et al., 2020; Shoaib et al., 2015;

Skretting & Grønli, 2022). Context awareness enable

and improve systems in a plethora of different aspects

of our daily lives and mobility and public transport

solutions could greatly benefit from enhanced activity

recognition geared towards contextual changes during

public transport journeys. Knowledge about the mode of

transport can provide stakeholders and decision-makers

in mobility and public transport companies with useful

statistics which in turn can be taken advantage of

when planning maintenance and new public transport

routes. Furthermore, by automatically detecting whether

a traveler is on board a public transport vehicle we

can facilitate the implementation of more intelligent

public transport solutions such as Be-In/Be-Out (BIBO)

solutions where explicit interaction no longer are

needed (Bitew et al., 2020; Oplenskedal et al., 2020;

Servizi et al., 2022). In this paper, we propose a novel

approach for transport mode recognition towards solving

the issue of accurate in-vehicle presence detection by

training machine learning models based on mobile sensor

data. The models are able to infer the mode of transport

a traveler is in with high accuracy, using only available

sensor data from the traveler’s smartphone.

Section 2 reviews efforts on activity recognition

and solutions towards solving the challenge of accurate

in-vehicle presence detection for intelligent public

transport systems. Section 3 positions our work within

the realm of public transport and provides details on

data collection. Section 4 entails the analysis in terms of

feature selection and balancing of the collected dataset, in

addition to presenting the results of the machine learning

models. In Section 5 we discuss our findings before

concluding in Section 6.

2. Background

Neither context awareness, nor activity recognition

are particularly new phenomenons and there have been

numerous and significant research efforts towards both

of these concepts. Bulling et al. (2014) defined an

Activity Recognition Chain (ARC) which is a sequence

of signal processing, pattern recognition and machine

learning techniques that implements a specific activity

recognition system behaviour. ARC entails steps such

as preprocessing, segmentation feature extraction and

classification. Although ARC bears strong resemblance

to other pattern recognition systems, it also has a number

of specific requirements and constraints. ARC has

become one of the most prominent ways of handling

activity recognition and many authors have employed

this procedure in their work. One example is the work by

Baldominos et al. (2019). In their paper they conducted

a comparison of deep learning techniques for activity

recognition using mobile devices. They tested out

various classifiers such as extremely randomized trees,

random forest, logistic regression, naive Bayes, K-nearest

neighbours and multi-layer perceptron when attempting

to classify various activities such as common postures,

working activities and leisure activities to mention a few.

They found that ensembles of decision trees, such as

random forest, yielded the highest accuracy. Whether

we are inferring physical activities such as running, or

less active activities such as being a passenger, the same

approach for data collection, preprocessing, training and

classification can be employed.

Authors have employed similar techniques to

solve the problem of accurate in-vehicle presence

detection for BIBO solutions, however, most of these

authors rely on on-board equipment. Wieczorek

and Poniszewska-Marańda (2019) proposed to mount

beacons inside public transport vehicles and to employ

machine learning techniques to detect whether a

passenger is actually situated inside the vehicle, within

range of the beacon signal. Other authors have

also attempted various approaches using beacons and

Bluetooth scanners (Kostakos et al., 2010; Narzt et al.,

2015, 2016), however Bluetooth seems to come short

when high accuracy in-vehicle presence detection is

required. Oplenskedal et al. (2020) instead proposed

a framework where they took advantage of a reference

device, in combination with a neural network to establish

in-vehicle presence. In their approach, sensor data, such

as acceleration, barometer, magnetic field and gyroscope

are collected from the passengers’ smartphones and

is then compared with that of an on-board reference

unit. The data from both devices is sent to a cloud

solution which is running a neural network which

in turn estimates the likelihood of a passenger being

inside the given vehicle. The same authors have also

improved this solution both in terms of in-vehicle

presence detection accuracy and the amount of data

transfer needed (Oplenskedal et al., 2022). The authors

increased the accuracy through adapting the number of

convolutional layers and filters and reduced the amount

of data transfer by reducing the number of sensors needed

to only require data from the barometer.

Skretting and Grønli (2022) proposed a mobile

application consisting of a pre-trained multi-layer

perceptron to infer the mode of transport. While most

other attempts require equipment mounted inside the

various transport vehicles, this approach would only

utilize the travelers smartphone to classify the mode

of transport. While this approach might be more cost
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efficient, the accuracy suffered slightly compared to the

work by Oplenskedal et al. (2020). However, the authors

did reach an accuracy of above 90 percent. In addition,

since the inference was conducted on-device, no data

transfer was required as opposed to the solution presented

by Oplenskedal et al. (2020).

Although previous work close in on accurate

solutions for in-vehicle presence detection of BIBO

solutions, improvements can be made to accuracy, data

transfer, architectural design and scalability.

3. Approach

Scalability and cost are important aspects if public

transport operators are to implement an in-vehicle

presence detection solution at large scale. Our approach

requires no additional equipment and relies solely on the

traveler’s smartphone. By omitting the need for on-board

equipment we can also reduce cost related to installation

and maintenance. We have conducted a similar procedure

to that of ARC (Bulling et al., 2014) in terms of data

collection, preprocessing and classification. Even though

transport mode recognition can be used in a variety of

contexts, we focus on utilizing the solution towards

solving the challenge of in-vehicle presence detection

for intelligent public transport solutions.

3.1. Intelligent Public Transport

Traditionally, public transport solutions entailed

a fairly manual process of obtaining and validating

tickets. Different countries and locations worldwide have

different implementations of public transport ticketing

systems, however, most of them require some degree

of manual operation in order for travelers to obtain

a ticket. Whether the solution is digital, such as a

mobile application, or physical, the traveler will always

have to explicitly do a manual operation to obtain the

ticket. Moreover, most of these solutions does not

provide the public transport operators with sufficient

data and statistics as to which routes are being used

most frequently or even, which types of public transport

vehicles are being utilized. Lately, researchers have

been been looking into the concept of Be-In/Be-Out

(BIBO) solutions where explicit interaction is no longer

needed (Bieler et al., 2022; Bitew et al., 2020; Servizi

et al., 2022). The idea is that travelers can embark or

disembark any public transport vehicle and the system

would automatically know which passenger traveled what

distance with which public transport vehicle. As such,

the system can automatically issue a ticket, or withdraw

the required amount from the traveler’s digital wallet

or bank card. Employing a BIBO solution comes with

many benefits. First and foremost, traveling using public

transport will be seamless and effortless in terms of ticket

purchase which can be a challenging task, especially

when maneuvering in large, complicated networks with

different zones and pricing schemes. Additionally, if

the system knows the exact point of embarking and

disembarking, new, more dynamic business models

can be taken advantage of such as distance-based or

duration-based pricing schemes. This can lead to

fairer pricing, especially for people living close to

bordering zones. Moreover, the information collected

through this kind of solution can contribute to ease the

decision-making process and lead to better decisions

which may benefit the general population in terms

of planning new roads, public transport routes and

so on. BIBO solutions stand in contrasts to other

public transport ticketing paradigms where passengers

are required to explicitly check in or check out using

either physical or digital tickets as opposed to BIBO

which does not require any explicit interaction. BIBO

solutions, however, needs to be able to accurately place a

traveler within a given public transport vehicle and this

is a non-trivial process.

3.2. Data Collection

Our approach takes advantage of machine learning

techniques to establish a traveler’s presence within a

given mode of transport. The machine learning models

were trained on a large amount of sensor data collected

through actual travelers’ smartphones. To establish a

ground truth regarding which values could be expected

of the different sensors while being situated within the

different modes of transport we enlisted a total of 101

regular travelers in two different cities in Norway. These

travelers had to install a custom mobile application which

collected all available sensor data on the device when

activated. Every traveler was instructed, in person, on

how to operate the application so that we didn’t risk

any contamination of the dataset. In the custom mobile

application, the traveler had to choose which mode of

transportation they were currently using during the data

collection, in addition to selecting where they would

place the device. Once both transportation vehicle and

device location were selected the traveler could activate

the data collection. When activated, the application

would check for available sensors and capture all sensor

events on the device. Since transportation modes such as

metro or train sometimes travel below ground the data

was stored on the device so that it was not dependent on

an active internet connection to collect the data. By

storing the data on the devices we ensured that the

dataset included sensor data from all areas where public

transportation may venture, regardless of the level of
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Figure 1. Custom Mobile Application

internet connectivity. After a journey, when a stable

internet connection was available, the traveler would

then upload the data.

Figure 1 presents the data collection view and the

upload view of the custom mobile application. Both

the phone placement selection and the transport mode

selection are drop-down menus. For the phone placement

the traveler could at any time choose between hand,

pocket and other. Other was selected if the traveler put

the device in a bag, backpack or similar. For the transport

mode the traveler would choose either bus, train, tram,

metro, e-scooter, bicycle, boat, car, inside or outside. All

participants were instructed to activate the app while they

were using any of the aforementioned transport modes.

While most of these are self-explanatory both inside

and outside might seem vague. The participants were

instructed to use inside when they were located inside a

building and not inside any vehicles. Outside was used

when the participants were outside and not using any

vehicles such as e-scooter or bicycle. We collected data

labeled inside and outside to use as a control for the

algorithm later on. The data collection resulted in a total

of 576,839,057 sensor events of which 536,632,311 were

from Android devices and 40,206,746 were from iOS

devices. From Figure 2 we can see the distribution of

sensor events for each transport mode, for both Android

and iOS. As we can see, we collected significantly more

data on board busses than any other mode of transport

for both operating systems. For Android, the mode of

transport where we collected the least amount of data

was e-scooter; for iOS we did not collect any data for

e-scooter (sensor data collected is presented in Table 1).

The sensor data was collected from a large variety of

devices, representing both the major operating systems,

iOS and Android, in addition to a diverse selection of

models, both high-end and low-end. Figure 3 shows

the distribution of different devices used to collect the

dataset. By collecting sensor data from such a diverse set

Figure 2. Sensor Event Distribution

Figure 3. Distribution of Devices

of devices we can significantly limit the potential issues

related to variations in software, hardware and sensor

manufacturers, in addition to better represent the sensor

data available in the general population.

The dataset consisted of a unique installation id,

timestamp, mode of transport, type string and integer

corresponding to the device sensor that generated the

sensor event, the actual sensor data, the manufacturer and

model, in addition to the physical location of the device.

We also had a counter within the mobile application

that incremented the number of journeys and trips taken

which we appended to the sensor event. We defined

a journey as going from the starting location to the

final destination, while a trip is each individual mode

of transport within a journey. Although we now had two

quite large datasets, multiple steps of preprocessing were

required to be able to effectively train machine learning

models on it.

3.3. Data Preprocessing

Through the participants we had amassed two large

datasets, one for iOS and one for Android. However,
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the raw data requires a series of processing techniques

to be suitable for machine learning algorithms. From

the collected data, in both datasets, we first removed

empty data and fields containing null values for bad or

missing measurements. Then we removed all trips with

a duration less than 30 seconds or more than an hour.

Trips shorter than thirty seconds were not likely to be an

actual trip but rather an accidental data collection. Trips

exceeding 1 hour, on the other hand, could be the result

of a traveler forgetting to stop the data collection when

leaving the public transport vehicle. For the Android

data, we removed all device-specific sensors which were

not part of the Android operating system. iOS devices

does not possess any manufacturer specific sensors that is

not part of the iOS operating system since Apple is both

manufacturing the devices and providing the operating

system. However, for both datasets we also removed

several operating system specific sensors which were

unlikely to yield any results based on previous research

and intuition. For instance, most Android devices has

a light sensor, however, light levels may vary based on

the time of the day or where the device is placed (e.g.

in a backpack) and as such, data relating to the light

sensor were omitted. On iOS, on the other hand, we

removed sensors such as proximity, screen brightness

and so on. After removing sensors with a low likelihood

of having a correlation with the mode of transport

we were left with the following sensors for Android:

accelerometer, magnetic field, orientation, gyroscope,

barometer, gravity, linear acceleration, rotation vector

and game rotation vector. Many of these sensors

corresponds to sensors other authors has deemed useful

in previous work (Mastalerz et al., 2020; Oplenskedal

et al., 2020; Skretting & Grønli, 2022). For iOS we were

left with accelerometer, barometer, motion quaternion,

gyroscope, magnetometer, gravity and rotation rate.

In addition, we also collected the amplitude of the

surrounding noise through the device’s microphone for

both devices. Different modes of transportation could

potentially have unique noise patterns which could help

distinguish the traveler’s mode of transport.

To investigate any particular patterns related to the

movement and the environment of a particular public

transport vehicle we analyzed the data over a period of

time. We choose a sliding window of 10 seconds with a 5

seconds overlap based on previous research (Skretting &

Grønli, 2022). This approach is similar to what other

authors have done in their work (Baldominos et al.,

2019; Bulling et al., 2014). The smaller the window

size, the faster will the on-device inference be since the

device will have to collect data over the same duration.

However, with a too small window size it may be difficult

to distinguish patterns related to the environment and

patterns related to movement of the given transport mode.

When aggregating the data over the chosen time frame

we had to employ an aggregation function, however, the

literature was not clear on what kind of aggregation

function was most suitable for this kind of system so,

with a window size of 10 seconds, we calculated the

average, standard deviation, variance, max, min and

the quantiles for each value, for both datasets. All the

aforementioned steps resulted in a total of 260 different

features for the Android dataset and 211 different features

in the iOS dataset.

4. Result and Analysis

Even though we had reduced the dataset quite a bit

after the aforementioned steps, it was still beneficial to

reduce it even more. The less features required by the

model, the less work is required by the mobile device to

collect and process the data before running inferences.

Moreover, by employing only the features that correlates

the most with each mode of transport we can make

sure that the performance of the model is as high as

possible, in addition to reducing risk of overfitting. In

our previous work we trained a multi-layer perceptron for

transport mode classification (Skretting & Grønli, 2022)

with good results, however for this work we alternatively

took advantage of the XGBoost algorithm to see if this

would lead to better performance for our our dataset.

XGBoost has previously proven to yield good results

when classifying mode of transport (Gertz et al., 2020;

Lu et al., 2019).

4.1. Feature Selection

Now that we had selected a handful of sensors based

on initial selection from previous research we wanted

to examine whether removing any more would greatly

impact the accuracy of the XGBoost model. So for both

Android and iOS we trained a model using all available

features and then trained new models where we removed

one sensor at the time. Table 1 presents the results from

the sensor removal experimentation.

From Table 1 we can clearly see which sensors cause

a drop in the accuracy when removed. With a baseline

of 96.86 % accuracy for Android we see that the two

features that causes the accuracy to rise when removed

is the game rotation vector and orientation. However,

with a difference of only 0.06% for the game rotation

vector and only 0.04% for the orientation, this could be

a result of the stochastic nature of the algorithm. We

can also see that removing the linear acceleration sensor

causes the smallest drop in accuracy, with a drop of only

0.02%. Linear acceleration is a composite sensor in

Android and is derived from the accelerometer, and since
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Table 1. Sensor Removal Experimentation
Android

model

iOS model

Without sensor accuracy % accuracy %

Accelerometer 96.68 96.99

Magnetometer 95.26 87.51

Orientation 96.90 N/A

Gyroscope 95.66 97.05

Barometer 95.99 95.87

Gravity 96.82 97.08

Linear acceleration 96.84 N/A

Rotation vector 96.76 N/A

Game rotation vector 96.92 N/A

Motion quaternion N/A 96.73

Rotation rate N/A 97.11

Audio 96.49 96.91

All sensors 96.86 97.08

the accelerometer is already a feature in our model, the

need for linear acceleration might not be present. Audio,

rotation vector, acceleration, linear acceleration, and

gravity all causes a drop of less than 0.4% when removed.

The magnetometer, gyroscope and barometer, on the

other hand, causes the largest drop in accuracy when

removed which attests to the findings in (Oplenskedal

et al., 2022) where the authors found that the barometer

was enough to infer in-vehicle presence detection. The

drop in accuracy is very small for most sensors which is

an indication that we might not need all of the sensors to

reach high accuracy.

For the iOS dataset, on the other hand, we only

achieved a higher accuracy by removing the rotation rate.

However, since this was an increase of only 0.03%, this

as well could just be a result of the stochastic nature of

the algorithm. On iOS the importance of the individual

sensors seems to differ slightly from the importance of

the Android sensors. Removing audio, gyroscope or

accelerometer caused negligible accuracy drop, while

removing gravity caused no effect. However, removing

the magnetometer caused the largest drop in accuracy,

with a drop of almost 10% which indicates that the

magnetometer might be more important on iOS devices

when inferring mode of transport. Similar to Android,

the barometer caused a notable drop in accuracy when

removed. Note that we only removed one sensor at a time,

trained a new model, added it again, before removing

another. As such, the accuracy might be very different if

we had chosen to remove multiple sensors at the same

time. Since our goal for this work was to reach as

high accuracy as possible and the accuracy increase of

dropping sensors were insignificant we selected all of the

sensors for our final models, both for Android and iOS.

In addition to experimenting with the different

Table 2. Aggregation Function Removal
Experimentation

Android

model

iOS model

Without aggregation

function

accuracy % accuracy %

Min 96.60 97.02

Max 96.80 97.01

1st quantile 96.75 96.98

2nd quantile 96.74 97.12

3rd quantile 96.71 96.97

Average 96.73 97.12

Range 96.91 97.18

Variance 96.89 97.01

Standard deviation 96.76 97.19

All calculations 96.79 97.08

Table 3. Aggregation Function Experimentation
Android

model

iOS model

Aggregation function accuracy % accuracy %

Min 94.58 94.76

Max 94.97 95.23

1st quantile 92.71 95.50

2nd quantile 92.98 95.25

3rd quantile 93.26 95.27

Average 92.34 94.78

Range 92.06 84.73

Variance 87.03 82.89

Standard deviation 86.95 82.83

sensors, we conducted the same approach when

evaluating the aggregation functions. We built a model

with all of the aggregation functions and then removed

one function, re-trained the model, added it again before

removing another aggregation function. For Android we

see that removing the range, max, variance or average

causes an increase the accuracy, while removing the

other aggregation functions caused a negligible drop

in the accuracy. Surprisingly, removing the min value

causes the largest drop in accuracy, however, since the

variations are so minuscule it might just be the result

of the stochastic nature of the algorithm. Similar to

that of Android, for iOS the variation in accuracy is

insignificant for all of the aggregation functions with

the highest difference of 0.11% by removing the third

quantile. Since we were not satisfied with the result of

the aggregation function removal procedure ( Table 2),

we instead trained XGBoost models using only one of

the aggregation functions at a time (Table 3).

By training models using only one aggregation

function at a time we achieved greater variation in the

results. For Android we see that the min and the max

values yields the highest accuracy. Min and max is just
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Figure 4. Data Distribution Before and After
Applying SMOTE Android

Figure 5. Data Distribution Before and After
Applying SMOTE iOS

the lowest and highest value observed within the 10

second window and is not really an aggregation function

in and of itself. It is therefore quite surprising that using

these functions yields a higher accuracy than functions

such as standard deviation, average, variance and range.

Both standard deviation and variance yielded the poorest

accuracy. The results for iOS are quite similar where

the standard deviation, variance and range performs

least well. The rest of the functions perform similarly;

however, for iOS, using the first quantile function for

aggregation yields the highest accuracy, as opposed

to the max value of Android. Nevertheless, since the

variations in accuracy are tiny, this might be a result

of the stochastic nature of the algorithm. From the

aggregation function experimentation it is apparent that

we achieve the highest accuracy using a combination

of aggregation functions. Even though many of the

aggregation functions seems to lower the accuracy of

the models, we achieved the highest accuracy when

combining them. Thus, we decided to train our final

models by combining all the functions.

4.2. Imbalance

Figure 2 shows the distribution of sensor events

within the different modes of transport. The dataset is

fairly skewed and imbalanced. With imbalanced datasets

there might be too few samples of the smaller classes

for a model to learn the decision boundary effectively.

We therefore had to address this issue before training our

final models and as such took advantage of the Synthetic

Minority Oversampling Technique (SMOTE) (Chawla

et al., 2002) to balance our dataset. Figures 4 and 5 shows

the distribution of data for the different classes before

and after applying SMOTE for both Android and iOS.

For Android over 45% of our sensor events were

Figure 6. Confusion Matrix Android

captured on board busses, roughly 24% on metro, while

events captured on board boats, cars, e-scooters, bicycle

and trains resulted in less than 15% combined. The rest

of the dataset consisted of sensor events captured outside

and inside, which we grouped together as other, which

in turn constituted roughly 24%. On iOS almost 56%

of the data was captured on board busses, roughly 12%

on metro, around 5% other, while the remaining modes

accounted for the remaining 27%. When employing

SMOTE, we synthesize data for the minority classes,

resulting in every class having the same amount of values

as the majority class, as seen in the figures 4 and 5.

4.3. Android

As our goal was to reach as high accuracy as possible

without the use of any equipment, mounted in vehicles

or otherwise, we used all the features from the feature

evaluation and all the aggregation functions since this

combination yielded the highest accuracy, not counting

negligible variation. We then applied SMOTE to balance

the dataset and reached an accuracy of 98.91% for the

Android model. The confusion matrix for the Android

model can be seen in Figure 6.

The matrix presents the number of correct predictions

for each class, in this case, mode of transportation.

From the confusion matrix we can see that the model is

successful in classifying all modes of transport with high

accuracy, with only a handful of wrong classifications

for each class. Table 4 shows the report and we can see

the precision. The classes with best performance was

bicycle, boat, car and e-scooter, while bus, metro and

tram performed the least well. From Table 4 we see

that the final Android model has a precision, recall and

f1-score of above 97% for all classes.
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Table 4. Classification Report Android
Precision Recall F1-score Support

BICYCLE 0.99 1.00 1.00 16523

BOAT 1.00 1.00 1.00 16669

BUS 0.98 0.99 0.98 16497

CAR 1.00 1.00 1.00 16465

ESCOOTER 1.00 1.00 1.00 16428

METRO 0.98 0.97 0.97 16477

OTHER 0.99 0.99 0.99 16596

TRAIN 0.99 0.99 0.99 16501

TRAM 0.97 0.98 0.98 16603

accuracy 0.99 148759

micro avg 0.99 0.99 0.99 148759

weight. avg 0.99 0.99 0.99 148759

Figure 7. Confusion Matrix iOS

Table 5. Classification Report iOS
Precision Recall F1-score Support

BICYCLE 1.00 1.00 1.00 23183

BOAT 1.00 1.00 1.00 23025

BUS 0.98 0.97 0.97 23112

CAR 0.99 0.99 0.99 23304

METRO 0.96 0.96 0.96 22799

OTHER 0.99 1.00 0.99 22898

TRAIN 0.97 0.97 0.97 23077

TRAM 0.95 0.96 0.96 23160

accuracy 0.98 184558

micro avg 0.98 0.98 0.98 184558

weight. avg 0.98 0.98 0.98 184558

4.4. iOS

For the iOS model we employed the same approach

and employed all sensors and aggregation functions. The

final iOS model reached an accuracy of 98.03%. Note

that for iOS we did not have any data on e-scooters so the

e-scooter class was omitted for this model. The confusion

matrix for the iOS model can be seen in Figure 7. The

confusion matrix for iOS shows that the model is able

to classify the different modes of transport with high

accuracy, similar to that of the Android model.

Table 5 presents the classification report for the iOS

model. The report is similar to that of the Android model,

however it performs slightly worse when classifying most

of the classes, except for bicycle, boat and other. The

iOS model performs almost 1% less accurate than the

Android model. However, for the iOS model we had

significantly less data and different sensors.

5. Discussion

We proposed two machine learning models based on

the XGBoost algorithm for transport mode recognition.

Our models are able to successfully classify whether

a traveler is situated in a bus, train, tram, metro, car,

boat or bicycle, in addition to classifying when a traveler

is not situated within any of these modes. Accurate

transport mode recognition can be used as a component

to solve the issue of in-vehicle presence detection for

Be-In/Be-Out solutions. In-vehicle presence detection

is a major challenge and a requirement to implement

BIBO solutions. Without presence detection, there is

no way of knowing whether the traveler is in fact using

the public transport vehicle as opposed to walking next

to it or driving behind it. Unless the system is able to

determine, with high accuracy, the onboard presence of a

traveler it can not automatically issue tickets and charge

the travelers in a seamless fashion.

We achieved an accuracy of 98.91% and 98.03%

for Android and iOS, respectively, which outperforms

previous work (Oplenskedal et al., 2022). Moreover,

our approach require no on-board equipment, and only

requires sensor data input to infer the mode of transport.

In dialog with various public transport operators in

Norway we found that it was desirable to avoid installing

any form of equipment on-board public transport vehicles

to increase scalability while also reducing cost. Some

previous work (Oplenskedal et al., 2022; Oplenskedal

et al., 2020) employs an intricate distributed architecture

where the traveler’s device need to communicate with

the onboard device during the trip. This results in an

increased amount of data transmissions, which in turn

may lead to an increase of power consumption on the

traveler’s device. Since our approach only consists of

a single model, it could be deployed in a variety of

different architectures. For instance, the models could

be deployed in a cloud solution exposing an API routing

mobile sensor data to the model and then returns the

result of the inference. The travelers’ could then collect
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the required data over a 10 second period, send it to

the cloud solution to determine the mode of transport.

Public transport operators could in turn use this to issue

tickets, gather travel statistics and so on. Due to the

flexibility of our approach we could also, instead, place

the models within the public transport operators’ mobile

ticketing applications. By taking this approach the device

would not need to transmit any data other than the result

of the inference. Having the model placed on device

would also improve privacy since no sensor data would

have to leave the device other than the result of the

inference. If the sensor data were to be intercepted

malicious actors could potentially take advantage of the

mobile sensor data to discern whether a traveler is home

or not before conducting a break-in, or to derive a more

specific location of the traveler.

While our approach has many benefits it is worth

discussing potential issues as well. For instance, the

proposed models of this approach require microphone

access. In both Android and iOS this is an explicit

permission the traveler would have to give in order for the

system to be able to access it. It might be hard to convince

a traveler of giving a public transport ticketing app access

to their microphone, even though, in our solution, we do

not capture full audio but only the amplitude or the noise

level of the traveler’s surroundings. It could therefore be

beneficial to remove the dependency on the audio data if

this solution were to be implemented on a larger scale.

Nevertheless, our feature selection shows that without

using the audio data we still achieve an accuracy of over

96% for both models, before applying SMOTE. The

accuracy without audio was less than 0.3% lower than

when including it for both models and we can therefore

assume that the accuracy drop of omitting the audio

values and applying SMOTE would result in an accuracy

very close to what we achieved with audio.

Another aspect worth discussing is the reliability of

the sensor data we collected through the 101 participants

since this is the foundation for our models and serves

as the ground truth. Although it is impossible to know

for certain whether the participants labeled data with

wrong transport mode, we went to great lengths to

ensure that the data collected was as accurate as possible.

Every participant had to attend a 2-hour in-person

training session. We explained the importance of the

data collection, carefully explained how to operate the

mobile application and even did multiple trips afterwards

with all the participants so that they could test out

the solution under supervision. Every participant was

awarded with a one month free public transport travel

pass midway during the data collection period of four

weeks. We decided to grant them the travel pass midway

so that participants could not just show up, get their

pass and then refuse to attend. During the in-person

training session we also tried to assess the individual

participant’s motivation for doing this and participants

who showed a lack of interest or motivation were rejected

and denied access to the study. However, regardless of

good intentions and motivation the participants could, of

course, mistakenly press the wrong mode of transport or

forget to stop the collection. We tried to mitigate this in

three steps: First we stored all data on-device. Thereby,

we removed the need for a stable internet connection

and, as such, ensured that no data was lost in tunnels or

similar. Furthermore, since the data was stored on the

device we could aggregate and present the different trips

for the participants in the mobile application so that they

could verify that they had actually used the given mode

of transport in the displayed time frame. In addition,

during preprocessing of the dataset we removed all trips

shorter than 30 seconds and longer than an hour to further

mitigate the risk of participants forgetting to stop the data

collection. Lastly, we carried out support during the

whole period so that participants could report isuses, or if

they had mistakenly uploaded wrong data that we should

delete. All in all, we are very confident in the dataset and

the ground truth it provides for our models.

Although we are confident in the dataset we collected

and the large amount of sensor values we used for training

the models, there is always a risk of overfitting, which

is when a model does not generalize well from observed

data to unseen data (Ying, 2019). When a machine

learning model is trained with too much data it can

learn the detail and noise in the training data so that

it impacts the performance of the model negatively when

presented with new data. That is to say, the model learns

to classify based on the noise and arbitrary variation in

the training data which does not necessarily apply to new

data which in turn leaves the model with poor ability

to generalize. However, we trained our models with

only two thirds of the data and kept a holdout set of one

third for testing and verification. As such, the accuracy

presented for the different models attests to our models

ability to generalize and is a strong indication that an

overfitting problem is not present. Nevertheless, it could

be that our models, have picked up and learned concepts

based on the noise and seemingly random fluctuations

in the dataset. However, we would then argue that the

noise and fluctuations are not, in fact, random after all

but rather a generalizable aspect of mobile sensor data.

6. Conclusion and Future Work

In this paper we presented two machine learning

models, one for Android and one for iOS, based on the

XGBoost algorithm for transport mode recognition. We
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achieved an accuracy of 98.91% and 98.03% for Android

and iOS, respectively, using off-the-shelf technology.

Our models are able to successfully classify transport

modes such as bus, train, tram, metro, car, boat or bicycle,

in addition to classifying when a traveler is not situated

within any of these modes. For Android, the model is

also able to classify whether a traveler is on an e-scooter.

Our approach requires no on-board equipment and can

be deployed either on-device or in a cloud solution.

By omitting the need for any equipment we potentially

reduce cost related to both installation and maintenance,

not to mention the equipment in itself. When deploying

the solution on device, no data transmission is needed

and as such the privacy of the traveler is ensured.

In the future we would like to explore the dataset

further to see if we can find other interesting correlations.

Future work should entail testing out different machine

learning algorithms and different balancing mechanisms.

In addition, work should go into evaluating and

finding optimal aggregation functions for these kinds

of problems. Moreover, future work should go into

implementing and evaluating the power consumption

of this sort of algorithm running on a device. This for

example can be done using a hard-soft approach to batch

benchmarking smartphone (Yannibelli et al., 2023).
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ABSTRACT 
Urbanization has increased reliance on intelligent transportation systems, with transport 
mode detection playing a pivotal role. Transport mode detection leverages sensor data 
from mobile devices to classify transportation modes, enabling applications such as opti-
mized route planning and autonomous ticketing. However, existing datasets for developing 
accurate transport mode detection solutions often lack diversity in devices, participants, and 
transportation modes, limiting their generalizability. Feature selection in transport mode 
detection research also remains inconsistent, relying heavily on domain-specific experimen-
tation. This study introduces a novel dataset addressing these limitations by including data 
from 101 participants across 57 unique device models, including both Android and iOS, and 
covering 10 transportation modes. Additionally, we present an ensemble-based framework 
for feature evaluation and reduction, which systematically ranks features in a generic and 
transferable manner. Evaluation shows that models trained using features ranked by the 
proposed framework achieve up to a 75% reduction in feature size while maintaining com-
petitive accuracy, enabling efficient, on-device transport mode detection solutions. The 
framework also identifies the most impactful sensors and aggregation functions, offering 
insights transferable across diverse algorithms and applications.
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Introduction

Urbanization is reshaping the planet, marking one of the 
most significant shifts in human settlement patterns in 
history. The rapid migration of people to cities, driven 
by the promise of better opportunities and economic 
growth, has transformed urban areas into the defining 
hubs of modern life, with profound social, economic, 
and environmental implications (Zhang, 2016). With the 
rapid expansion of urban areas and the increasing con-
centration of populations in cities (Angel et al., 2011), 
there is a growing need for efficient, sustainable, and 
inclusive transportation systems. Advances in sensor and 
network technology, combined with the widespread 
adoption of smartphones, have enabled the collection of 
vast amounts of data on vehicles and traveler behavior 
(Prelipcean et al., 2017; Zhang et al., 2011). These data 
provides a foundation for real-time insights into traffic 
patterns, delays, and mobility trends, allowing intelligent 
transportation solutions to enhance the efficiency and 

user experience of public transportation. Among these 
innovations, transport mode detection plays a pivotal 
role, offering the ability to automatically classify travel-
ers’ modes of transportation and support applications 
such as autonomous ticketing and optimized route plan-
ning (Mangiaracina et al., 2017; Oplenskedal et al., 2021; 
Zhang et al., 2011). Transport mode detection revolves 
around discerning which type of vehicle a user is situated 
in, using different combinations of contextual informa-
tion such as location data, inertial or ambient sensor 
values collected from smartphones, smartwatches, or 
similar devices. This data is then used to train machine 
learning algorithms which are able to detect specific pat-
terns that characterizes different modes of transporta-
tion. Different vehicles exhibit unique speed and 
acceleration patterns, which can be effectively captured 
by accelerometers in smartphones to distinguish between 
various modes of transportation. Additionally, baromet-
ric pressure sensors (barometers) can detect subtle height 
variations along a road, differences imperceptible to the 
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naked eye, making them particularly useful for generat-
ing data indicative of specific transportation modes 
(Sankaran et al., 2014). Similarly, magnetometers meas-
ure the magnetic field surrounding the device and these 
readings are influenced by the structural composition of 
the vehicle, creating distinct magnetic signatures that 
can be leveraged to identify a person’s mode of transpor-
tation (Chen et al., 2017). Modern smartphones are 
uniquely positioned to provide the data needed for trans-
port mode detection solutions, due to their integrated 
sensors and widespread adoption (Cianciulli et al., 2017; 
Wahlstr€om et al., 2017). Today, mobile devices represent 
the largest source of data on human transportation pat-
terns, supporting advanced intelligent transportation sol-
utions (Zannat & Choudhury, 2019) and this data forms 
the foundation for a large spectrum of innovative solu-
tions in intelligent transportation systems.

Transport mode detection rely heavily on machine 
learning techniques and algorithms, which in turn 
depend on large, diverse, and representative datasets 
to accurately classify a user’s vehicle or activity. 
However, collecting such datasets is often a costly, 
time-consuming, and complex process, as the data 
must be gathered from real travelers using a wide 
range of devices to ensure representativeness. An add-
itional challenge is ensuring the collected data is 
accurately labeled to match the correct transport 
mode. This labeling process is typically performed by 
the data collector and must occur simultaneously with 
data collection to minimize uncertainty or errors in 
labeling. Currently, very few publicly available datasets 
for transport mode detection exist, and those that do 
are often limited in scope. Many suffer from homo-
geneity in terms of the devices used, the number of 
participants involved, or the range of sensors and 
transportation modes included. Notably, to the best of 
our knowledge, no publicly available datasets include 
data from iOS devices, despite these devices represent-
ing a significant share of the smartphone market 
(Grossi, 2019). The absence of certain transportation 
modes is another critical limitation. For example, if a 
dataset includes only buses and trains as labeled 
classes, the algorithm can only distinguish between 
these modes, making it impossible to classify other 
types of vehicles, such as trams or cars. Device diver-
sity is also crucial, as sensor data can vary signifi-
cantly between manufacturers and operating systems 
(Lane et al., 2010; Mathur et al., 2018) and training 
models on a dataset limited to specific devices may 
result in solutions that fail to generalize across a 
broader range of hardware. Therefore, data collection 
must include a diverse pool of devices, allowing 

algorithms to learn the differences in sensor data as 
they correspond to various manufacturers and sys-
tems. Furthermore, the way individuals interact with 
their devices significantly impacts the accuracy of the 
model (Coskun et al., 2015). For instance, inertial and 
ambient sensor readings can vary depending on 
whether a device is statically mounted within a vehicle 
or carried by a traveler. In the latter case, natural 
movements such as those of the arms, wrists, or torso 
introduce additional variability to the sensor data. 
This highlights the importance of datasets that reflect 
the diversity of real-world usage scenarios, capturing a 
wide range of user behaviors to ensure robust and 
reliable model performance. Ultimately, the lack of 
diverse, high-quality, and representative datasets hin-
ders development of robust, generalizable machine 
learning models for transport mode detection. The 
absence of standardized benchmarking datasets 
presents a significant challenge for comparing existing 
studies, as most rely on disparate datasets with vary-
ing characteristics (Aziz et al., 2024). Addressing these 
limitations is essential for advancing the field and ena-
bling accurate, real-world applications of transport 
mode detection technology.

While sensor data is invaluable for understanding 
mobility patterns and transportation modes, it also 
raises substantial privacy concerns. Location data, for 
instance, can be cross-referenced with external data-
sets to identify individuals, potentially exposing sensi-
tive information such as home and work addresses, 
personal movement patterns, and affiliations inferred 
from visits to specific venues (Huang et al., 2023). 
Although motion sensors are often regarded as 
privacy-friendly, research indicates they too can pose 
significant risks. Studies have shown that acceleration 
data, in particular, can enable serious privacy intru-
sions by facilitating inferences about a user’s location, 
identity, demographics, personality traits, health sta-
tus, emotions, or activities (Kr€oger et al., 2019). These 
privacy concerns have driven a growing interest in 
transport mode detection solutions that operate locally 
on users’ devices, avoiding centralized data processing 
(Ferreira et al., 2020; Kamalian et al., 2022; Wang, 
Cao, et al., 2018). While on-device processing enhan-
ces privacy, it also introduces challenges related to 
computational efficiency, particularly given the 
resource constraints of smartphones.

This work addresses these challenges with the fol-
lowing contributions:

1. Introduction of a Novel, Diverse Dataset (NOR- 
TMD): We provide an openly available dataset 
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that addresses critical limitations in existing data-
sets, including both Android and iOS data, 
diverse devices and participants, and previously 
under-represented transportation modes such as 
boats.

2. A Framework for Feature Evaluation and 
Reduction (EFT-TMD): We present a compre-
hensive framework to identify and rank the most 
critical features, consisting of aggregated smart-
phone sensor data, enabling the development of 
smaller and more efficient models without com-
promising accuracy.

3. Transferability of Identified Features: The 
insights derived from our framework demonstrate 
the transferability of the identified features across 
diverse machine learning models, ensuring that 
the findings can be applied to various datasets 
and real-world scenarios.

We propose three key contributions to advance the 
field of transport mode detection. First, we introduce a 
novel and diverse dataset, NOR-TMD, addressing criti-
cal limitations in existing datasets by including iOS 
data, diverse devices, and under-represented transporta-
tion modes such as boats. NOR-TMD provides a valu-
able resource for developing and benchmarking 
generalizable transport mode detection models. Second, 
we present a systematic framework for feature evalu-
ation and reduction (EFR-TMD), integrating multiple 
ranking techniques to identify the most critical features 
for transport mode detection. This framework facili-
tates the development of compact, efficient models that 
maintain high accuracy, making them suitable for real- 
time, on-device processing. Finally, we demonstrate the 
transferability of the identified features across diverse 
datasets, machine learning models, and real-world 
transportation contexts. Together, these contributions 
empower researchers and practitioners to design scal-
able, privacy-preserving, and generalizable solutions for 
intelligent transportation systems. In the following sec-
tion, we review the existing literature with a focus on 
data sources, preprocessing techniques, and machine 
learning algorithms used in transport mode detection.

Related work

Significant research efforts have been dedicated to 
addressing the challenge of accurate transport mode 
detection, with much of this work leveraging machine 
learning approaches (Chen et al., 2017; Guvensan 
et al., 2017; Hemminki et al., 2013; Kamalian & 
Ferreira, 2022; Liang & Wang, 2017; Sankaran et al., 

2014). Broadly speaking, methodologies in transport 
mode detection can be categorized into three main 
approaches: statistical methods, rule-based methods, 
and machine learning methods (Sadeghian et al., 
2021). Statistical methods, while foundational, have 
demonstrated limitations in accurately distinguishing 
between similar transport modes, such as cars, buses, 
and trains. Similarly, rule-based approaches often 
struggle with differentiating between closely related 
modes of transportation. In contrast, machine learning 
techniques exhibit superior generalization capabilities, 
enabling more precise discrimination between similar 
modes of transport (Xiao et al., 2019). Most contem-
porary machine learning approaches in this domain 
leverage data collected from mobile devices to infer 
transportation modes. This process bears a strong 
resemblance to the field of human activity recognition, 
which also employs similar methods to deduce user 
activities rather than the mode of transportation. 
Human activity recognition is a key component of 
mobile computing, especially in regards to context 
awareness, and is the automated assessment of what a 
user is doing (Pl€otz & Guan, 2018). Traditionally, 
human activity recognition research has been rooted 
in computer vision. However, with the advent of ubi-
quitous technologies such as mobile devices and wear-
ables, there has been a notable shift toward leveraging 
inertial sensors, such as accelerometers and gyro-
scopes, rather than image- and video-based data 
(Bulling et al., 2014). Transport mode detection can 
thus be viewed as a specialized subset of HAR, with 
many methodologies and insights from human activity 
recognition research being transferable to this domain. 
While both human activity recognition and transport 
mode detection predominantly employ machine learn-
ing techniques combined with mobile sensor data, 
there is significant variation in the types of data sour-
ces utilized, as well as in the preprocessing and feature 
extraction techniques employed for machine learning 
model training. In this section, we focus on three key 
aspects of transport mode detection: the types of data 
used as input, the techniques employed to process and 
prepare this data, and the machine learning algo-
rithms applied to achieve accurate transport mode 
detection.

Data foundation

The data foundation for transport mode detection can 
generally be categorized into three main types: net-
work data, geographical location data, and data from 
inertial and ambient sensors. Network data offers 
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valuable information that can be leveraged to infer 
transportation modes. Coarse-grained network data, 
such as call detail records (CDR), provides approxi-
mate geographical location information and has been 
utilized in transport mode detection (Bachir et al., 
2019). Other sources include GSM data and base 
station information (Asgari & Clemencon, 2018). 
Wireless access protocol (WAP) data, collected 
through wireless access points, has also shown poten-
tial when combined with inertial sensors. WAP data 
can identify nearby networks to approximate location, 
which can then be used to gather contextual details 
such as nearby public transport stations, stops, and 
services (Cardoso et al., 2016). While network infor-
mation has proven useful, it is typically employed in 
combination with other data sources, such as inertial 
sensor data or geographical location data, to improve 
accuracy (Asgari & Clemencon, 2018; Bachir et al., 
2019; Cardoso et al., 2016). Geographical location 
data, particularly GPS data, has been widely employed 
in TMD. Most studies utilize GPS in conjunction with 
other data sources to enhance differentiation between 
transport modes (Asgari & Clemencon, 2018; Bachir 
et al., 2019; Cavalcante et al., 2022; Kamalian & 
Ferreira, 2022; Nirmal et al., 2021). However, some 
research has demonstrated the feasibility of using GPS 
data alone to successfully distinguish between modes 
of transport (Sadeghian et al., 2022). When relying 
solely on GPS data, derived features such as acceler-
ation, calculated from location data, are critical for 
determining the transport mode (Sadeghian et al., 
2022). Inertial sensors, particularly accelerometers, are 
among the most commonly utilized data sources for 
transport mode detection and are key features in 
many transport mode detection systems (Cavalcante 
et al., 2022; Hemminki et al., 2013; Kamalian & 
Ferreira, 2022; Moreau et al., 2022; Nirmal et al., 
2021). Modern smartphones are equipped with a var-
iety of sensors, and there is considerable variation in 
the combinations of sensors used in research. Many 
approaches combine accelerometer data with other 
inertial sensors, such as magnetometers (Chen et al., 
2017) and gyroscopes (Asci & Guvensan, 2019; 
Guvensan et al., 2017). Additional sensors, including 
rotation vectors and device orientation sensors, have 
also been incorporated in certain studies (Alotaibi, 
2020; Moreau et al., 2022). Linear acceleration, gravity 
sensors, and barometers have also been utilized and 
have shown potential to improve accuracy (Alotaibi, 
2020; Sankaran et al., 2014). The integration of data 
from multiple sensors generally results in higher 
accuracy for transport mode detection and according 

to Nikolic and Bierlaire (2017), leveraging a broader 
array of sensors increases the reliability and robust-
ness of transportation mode classification.

Available datasets

While researchers often develop custom applications 
and recruit participants to collect sensor and location 
data for experimentation (Lorintiu & Vassilev, n.d.; 
Wang, Gao, et al., 2018; Xiao et al., 2015), these data-
sets are frequently not made publicly available, which 
poses a significant challenge for comparing results 
across studies (Aziz et al., 2024). Despite this limita-
tion, several systematically collected datasets are pub-
licly accessible. Notable examples include the HTC 
Transport Mode Dataset (Yu et al., 2014), the Sussex- 
Huawei Locomotion (SHL) Dataset (Gjoreski et al., 
2018), the US-TMD Dataset (Carpineti et al., 2018), 
and the Collecty Dataset (Erdeli�c et al., 2023). The 
HTC Transport Mode Dataset comprises 8,311 h of 
data collected from 150 students and 74 employees or 
interns, totaling 100 GB (Yu et al., 2014). Although 
extensive in terms of participant count, data volume, 
and transportation modes, its geographic diversity and 
generalizability are constrained due to data collection 
along only two predefined routes. Additionally, the 
dataset lacks diversity in sensors and devices. In con-
trast, the SHL Dataset, collected over seven months by 
three participants, contains 950 GB of data spanning 
2,812 h (Gjoreski et al., 2018). This dataset includes 
data from 15 different smartphone sensors, offering 
greater sensor diversity than the HTC dataset. 
However, it was collected using a single device type, 
which may limit its generalizability despite its larger 
scale and broader range of sensor modalities. The US- 
TMD Dataset includes approximately 32 h of data 
(3 GB) collected from 13 participants using 11 differ-
ent device types (Carpineti et al., 2018). While smaller 
in scale compared to the HTC and SHL datasets, its 
inclusion of multiple device types enhances its diver-
sity and applicability across different hardware config-
urations. Similarly, the Collecty Dataset contains 
approximately 242 h of data collected from 15 partici-
pants over five months (Erdeli�c et al., 2023). Though 
smaller in size than the SHL Dataset, it offers add-
itional value by contributing to the pool of publicly 
available datasets with a balanced focus on user diver-
sity and extended data collection periods. Diversity 
plays a critical role in creating models that generalize 
across environments (Gong et al., 2019). However, 
existing datasets often lack diversity in key areas such 
as participants, devices, sensors, and geographic 
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regions, limiting their generalizability. This highlights 
the pressing need for more comprehensive datasets to 
address these gaps and enhance model robustness in 
real-world scenarios.

Feature extraction and preprocessing

While a wide range of data sources can be utilized for 
achieving accurate transport mode detection, there is an 
equally broad variation in the methods and techniques 
employed to extract useful features and prepare these 
data sources for training machine learning models. 
Bulling et al. (Bulling et al., 2014) introduced the 
Activity Recognition Chain (ARC) framework, which 
outlines the sequence of steps required to infer a user’s 
activity using inertial sensors in the context of human 
activity recognition. A key aspect of the framework is 
segmentation, for which the authors recommend the use 
of a sliding window over time-series data to extract 
meaningful segments. Although the ARC framework pri-
marily targets activity recognition, the sliding window 
approach has been widely adopted in transport mode 
detection as well (Burkhard et al., 2020; Cardoso et al., 
2016; Widhalm et al., 2018). The length of these sliding 
windows typically ranges from one to 60 s. Longer win-
dows may also be employed, however, there is a tradeoff 
between achieving finer granularity and reducing com-
putational resource requirements, as well as maintaining 
higher window density (Matthes & Springer, 2022). For 
three-dimensional inertial sensor data, many studies 
compute the magnitude of the three axes to eliminate 
directional dependencies before aggregating the data seg-
ments (Cardoso et al., 2016; Widhalm et al., 2018; Yu 
et al., 2014). Similarly, to address time dependencies, 
some researchers transform the time-series data into fre-
quency data using Fourier transforms (Bulling et al., 
2014; Matthes & Springer, 2022). A variety of aggrega-
tion functions have been employed to summarize seg-
mented data and to define features for transport mode 
detection. Statistical functions such as variance 
(Widhalm et al., 2018), average (Asgari & Clemencon, 
2018; Cardoso et al., 2016; Kamalian & Ferreira, 2022; 
Sadeghian et al., 2022), median (Cardoso et al., 2016), 
minimum and maximum values (Cardoso et al., 2016; 
Kamalian & Ferreira, 2022; Sadeghian et al., 2022), kur-
tosis (Cardoso et al., 2016), standard deviation 
(Kamalian & Ferreira, 2022), percentiles (Das & Winter, 
2018), quartiles (Burkhard et al., 2020), and interquartile 
range (Nirmal et al., 2021) have all been used to extract 
meaningful features for machine learning models. For 
smartphone-based data collection, the majority of 
research relies on Android sensor data (Das & Winter, 

2018; Kamalian & Ferreira, 2022; Nirmal et al., 2021; 
Widhalm et al., 2018), with relatively few studies incor-
porating iOS sensor data in their proposed solutions or 
evaluations (Asgari & Clemencon, 2018). Despite this, 
there remains significant diversity in preprocessing tech-
niques and feature selection methods used to prepare 
data for machine learning models. The variety of algo-
rithms employed for these purposes further reflects the 
breadth of approaches explored in transport mode detec-
tion research.

Machine learning algorithms

A wide range of machine learning algorithms have been 
utilized to infer modes of transportation, spanning the 
majority of fundamental algorithmic classes (Nikolic & 
Bierlaire, 2017). These include decision trees (Cardoso 
et al., 2016; Ferreira et al., 2020), random forests 
(Kamalian & Ferreira, 2022), k-nearest neighbors 
(Sadeghian et al., 2022), Bayesian inference (Bachir et al., 
2019), hidden Markov models (Widhalm et al., 2012) 
and support vector machines (Nikolic & Bierlaire, 2017). 
In addition to foundational methods, more advanced 
sub-classes of algorithms have been utilized, including 
adaptive boosting (AdaBoost) (Muharemi et al., 2020) 
and extreme gradient boosting (XGBoost) (Lu et al., 
2019). Furthermore, neural network architectures such 
as multilayer perceptrons (MLPs) (Mastalerz et al., 
2020), recurrent neural networks (RNNs) (Vu et al., 
2016), and convolutional neural networks (CNNs) 
(Liang & Wang, 2017) have also been explored for trans-
port mode detection. In transport mode detection sys-
tems, the placement of the model within the system 
architecture significantly impacts factors such as 
resource consumption, privacy, and inference speed. 
Common deployment strategies involve server-side 
placement (Nirmal et al., 2021) or on-device placement 
(Cavalcante et al., 2022). Some studies further explore 
distributed architectures, such as fog computing, where 
inference models are deployed on fog nodes to balance 
computational efficiency and latency (Kamalian & 
Ferreira, 2022). The range of transport modes that these 
solutions can infer varies widely across studies. While 
some approaches target a minimal set of three modes 
(Cavalcante et al., 2022), others incorporate a broader 
spectrum of transportation options (Asgari & 
Clemencon, 2018; Cardoso et al., 2016; Kamalian & 
Ferreira, 2022). Commonly inferred modes include bus, 
train, car, metro, bicycle, and walking. A few studies 
extend their scope to include less commonly addressed 
modes, such as seagoing vessels (Guvensan et al., 2017), 
though such efforts remain rare.
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Summary of past research

The current state of transport mode detection research 
underscores significant reliance on sensor data, such 
as accelerometers, gyroscopes, magnetometers, and 
barometers, for distinguishing transportation modes. 
However, publicly available datasets often lack diver-
sity in terms of devices, operating systems, and trans-
portation modes, limiting their generalizability and 
usefulness for benchmarking. To our knowledge, there 
are no systematic frameworks for evaluating feature 
importance, despite the widespread use of varied pre-
processing techniques, aggregation functions, and 
machine learning approaches. This highlights the need 
for more diverse datasets, a structured approach to 
identifying critical features, and deeper insights into 
the relative importance of sensor data features com-
monly employed in transport mode detection 
research. Addressing these gaps is essential for devel-
oping robust, generalizable, and efficient transport 
mode detection solutions.

Dataset

To address the challenges and limitations identified in 
existing publicly available datasets, we present a novel 
dataset, NOR-TMD, specifically designed to enhance 
the generalizability, diversity, and applicability of 
transport mode detection research. NOR-TMD 
addresses these limitations by increasing device and 
sensor diversity, expanding participant counts, and 
incorporating transportation modes and sensors not 
previously represented. Furthermore, unlike other 
datasets, it includes data collected from both iOS and 
Android devices, ensuring broader platform coverage 
and applicability. By systematically collecting data 
from a wide range of participants, diverse geographic 
locations, and multiple device types, NOR-TMD pro-
vides a more comprehensive foundation for develop-
ing and evaluating transport mode detection methods. 
This section describes the data collection method-
ology, provides a comprehensive overview of the 
NOR-TMD dataset, and outlines the preprocessing 
steps implemented to clean and refine the raw sensor 
data.

Data collection

To populate NOR-TMD, we recruited 101 regular 
travelers, including men and women across diverse 
age groups and occupations. Recruitment was con-
ducted in two cities in Norway through multiple com-
munication channels. Data collection was facilitated 

using a custom mobile application developed for both 
iOS and Android platforms. For detailed information 
about the application, we refer interested readers to 
our previous work (Skretting et al., 2024). The appli-
cation was designed to activate and record events 
from all available sensors on a device at a sampling 
frequency of 5 Hz (200 ms). Due to variations in oper-
ating system resource management, hardware differen-
ces, and sensor prioritization, the actual sampling 
frequency varied. Nevertheless, a high frequency was 
prioritized to maximize data collection, with the 
option to adjust the frequency later using interpol-
ation techniques. Participants manually initiated data 
collection by selecting a transportation mode from a 
predefined list and stopped recording upon disem-
barking. Data was stored locally on the device, and 
after each session, participants were prompted to 
review a summary of their trips, including the mode 
of transportation, date, time, and trip duration. They 
were required to verify the accuracy of the labels 
before uploading the data to the server. To ensure 
high-quality data collection, all participants attended a 
mandatory two-hour, in-person training session. This 
session emphasized the importance of accurate label-
ing and instructed participants to delete any data they 
were uncertain about. Participants were divided into 
small groups and accompanied by instructors on pub-
lic transport trips for hands-on guidance. Data collec-
tion spanned one month, during which participants 
were incentivized with free public transport tickets. 
Email support was provided throughout the period, 
and any mislabeled or incorrectly uploaded data was 
promptly deleted from the database. These measures 
minimized errors and ensured high-quality data col-
lection. Figure 1 presents the distribution of devices 
used in the study.

Sensor removal and data cleaning

The dataset consists of raw sensor data collected from 
a variety of smartphone sensors on both iOS and 
Android platforms. Several preprocessing steps were 
implemented to ensure the data’s quality and rele-
vance for transport mode detection solutions. Out of 
the wide variety of different recorded smartphone sen-
sors, manufacturer-specific sensors (e.g., those unique 
to LG, Samsung, and Xiaomi devices) were excluded 
to enhance the model’s generalizability, focusing 
instead on standard sensors available across operating 
systems. Hardware-specific sensors unrelated to trans-
port mode detection, such as those linked to camera 
or screen functionality and device orientation, were 
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also omitted. Additionally, undocumented or nonstan-
dard Android sensors were excluded due to their lim-
ited applicability and the absence of sufficient 
documentation. Sensors with fewer than 100,000 
recorded entries during the data collection period 
were removed because their low data density could 
hinder efficient inference. Sensors irrelevant to trans-
port mode detection, including proximity sensors 
(which measure the distance to external objects), step 
counters, and ambient light sensors, were also 
excluded. To further refine the dataset, sensor events 
associated with trips exceeding one hour in duration 
were discarded, as such trips might reflect instances 
where users forgot to stop the data collection process. 
Additionally, trips lasting less than 60 s were removed, 
as such short durations could indicate instances where 
participants accidentally started data collection. The 
final set of sensors included in the dataset is detailed 
in Table 1. Figures 2 and 3 illustrate the distribution 
of data across different transportation modes for 
Android and iOS devices, respectively.

Dataset composition

The data collection and cleaning processes resulted in 
a total of 387 million unique sensor events, compris-
ing 363 million events from Android devices and 24 
million events from iOS devices. The substantial dis-
parity in data volume between the two platforms can 
be attributed to three key factors. First, Android devi-
ces offer a greater variety of sensor types compared to 

iOS devices, which have access to a more limited set 
of native sensors. Second, the study included approxi-
mately twice as many Android users as iOS users, 
contributing to the larger data volume from Android 
devices. Finally, although we specified the same sam-
pling rate for both platforms, the Android operating 
system of the devices included in the study seemingly 
supports higher sampling rates, further amplifying the 
data volume difference. Sensor readings were collected 
within one of the predefined transportation modes: 
bicycle, boat, bus, car, e-scooter, inside, metro, outside, 
train, and tram. While most of these transportation 
modes are self-explanatory, the modes “inside” and 
“outside” warrant additional clarification. The “inside” 
label refers to instances where travelers were situated 
inside a building, rather than within a vehicle. 
Similarly, the “outside” label corresponds to cases 
where individuals were outdoors but not in a 

Figure 1. Distribution of devices used to collect nor-TMD.

Table 1. Number of recorded sensor events.
Android Events iOS Events

Accelerometer 71 466 000 Gravity 3 859 042
Gyroscope 53 280 748 Rotation rate 3 859 042
Gyroscope unc. 42 118 113 Quaternion 3 859 042
Magnetic field 34 138 971 Gyroscope 3 857 737
Rotation vector 31 602 332 Accelerometer 3 857 017
Game rotation vector 29 521 508 Magnetic field 3 856 122
Linear acceleration 29 464 998 Pressure 759 027
Gravity 29 453 767 Activity recognition 151 154
Geomagnetic rot.  

Vector
19 964 410

Magnetic field unc. 18 021 641
Pressure 4 369 367
Activity recognition 4862

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 7



transportation vehicle, for instance, walking or stand-
ing outside. These additional labels were included to 
enable comparisons with similar transportation modes 
and to identify potential dissimilarities. For example, 
training a machine learning model using ambient sen-
sor data to distinguish between bicycles and e-scooters 
might inadvertently result in a model that primarily 
detects whether an individual is outdoors, as many 
sensor readings associated with these modes are influ-
enced by the outdoor environment. Similarly, data 
labeled as “inside” could exhibit characteristics that 
overlap with those of being inside a vehicle, such as a 

train. Capturing these modes allows for a more 
nuanced analysis and helps prevent such confounding 
effects in the training and evaluation of transport 
mode detection models. This dataset has been made 
publicly available on Kaggle (Skretting & Grønli, 
2025).

Feature evaluation framework

In this section, we introduce our framework for fea-
ture evaluation, EFR-TMD (Ensemble Feature 
Ranking for Transport Mode Detection). EFR-TMD is 
designed to identify the smartphone sensors and stat-
istical aggregations that are most advantageous for 
transport mode detection. By pinpointing the most 
impactful features, the framework enables the elimin-
ation of less informative ones, thereby reducing train-
ing time, inference time, and model size. This 
optimization ensures that models maintain high 
accuracy while operating more efficiently, particularly 
on resource-constrained devices.

Conceptualization

There are numerous techniques available for ranking 
feature importance, many of which are tailored to spe-
cific algorithms. However, some generic methods exist, 
such as Permutation Importance (PI) (Altmann et al., 
2010), Shapley Additive Explanations (SHAP) (Lundberg 
& Lee, 2017), Mutual Information (MI) (Battiti, 1994), 
the Analysis of Variance (ANOVA) F-test (Ståhle & 
Wold, 1989), and Classification and Regression Trees 
(CART) (Breiman, 2017). Permutation Importance is a 
technique used in machine learning to assess feature 
importance by randomly shuffling the values of a feature 
and evaluating the impact on model performance. The 
performance drop after shuffling reflects the importance 
of the feature, with the average performance decrease 
across multiple iterations used to rank features. Mutual 
Information quantifies the dependency between a feature 
and the target variable by measuring their statistical 
dependence, thus revealing how much information a fea-
ture contains about the target variable. The ANOVA F- 
test is a statistical method that compares the means of 
two or more groups to assess whether they differ signifi-
cantly. It calculates an F-score that can be used to rank 
features based on their contribution to the target vari-
able. SHAP, on the other hand, adopts a game-theoretic 
approach to explain the output of any machine learning 
model by distributing contributions fairly among fea-
tures, providing interpretable feature importance scores. 
Finally, CART-based feature importance evaluates how 

Figure 2. Distribution of Android sensor data across different 
transport modes.

Figure 3. Distribution of iOS sensor data across different trans-
port modes.
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much each feature contributes to the decision-making 
process during the construction of decision trees. While 
these methods are widely used, they often produce sig-
nificantly different results for the same dataset. This vari-
ability makes it challenging to determine which method 
is most appropriate for a specific context and whether 
the results are reliable. To address these challenges, we 
propose a comprehensive framework that integrates all 
these methods, alongside the built-in feature importance 
scores available from Random Forest and XGBoost mod-
els. In our framework, each feature set is evaluated inde-
pendently by these techniques, and the resulting scores 
are consolidated and normalized to produce a unified 
importance score for each feature. To normalize the 
data, the output from each importance method is sorted 
in descending order based on the feature scores, creating 
an ordered list for each method. These ordered lists are 
then consolidated into a single list by averaging the rank 
positions of each feature across all methods. Since each 
feature is defined as a combination of a sensor and an 
aggregation function, the ranking of individual sensors 
and aggregation functions is determined by calculating 
the average rank across all features that include the same 
sensor or function. The conceptual flow of the frame-
work is illustrated in Figure 4.

Ranking features using the proposed framework

Now that we have presented our framework, we apply 
it to NOR-TMD to evaluate the importance scores of 
commonly used sensor values and aggregation 

functions. Before the data can be processed by the 
framework, certain preprocessing steps are performed 
to ensure data quality and consistency. This analysis 
aims to identify the most influential features, provid-
ing insights into which sensors and aggregation meth-
ods contribute most effectively to transport mode 
detection.

Preprocessing
Before applying the framework to derive feature 
importance, we performed preprocessing steps to pre-
pare the sensor data for analysis. We applied the con-
secutive processing steps on all sensor data from 
NOR-TMD, except the built-in activity recognition. 
While various data processing techniques, such as 
applying Gaussian filters (Chen et al., 2017) or 
smoothing (Liang & Wang, 2017) can be applied to 
sensor values, we opted to retain the data as close to 
its raw form as possible to evaluate all sensors in a 
uniform and general manner. Since the goal of this 
study is to highlight the importance of sensors gener-
ically, we eliminated directional dependencies by cal-
culating the magnitude of the directional axes (x, y, 
and z) for each sensor, defined as 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: To 

segment the time-series data, we employed a window 
function. As noted by Matthes and Springer (2022), 
the choice of window length significantly impacts 
inference time, resource consumption, and model 
accuracy. Drawing on previous studies (Guvensan 
et al., 2017; Liang & Wang, 2017; Matthes & Springer, 
2022; Oplenskedal et al., 2021), we adopted a 

Figure 4. High-level overview of EFR-TMD.
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10-second window function with a 5-s overlap, given 
its demonstrated effectiveness in prior research. For 
each segment, we aggregated the magnitude data 
using a diverse set of statistical functions derived from 
the literature. These preprocessing steps were uni-
formly applied to both the iOS and Android datasets. 
While the collected dataset is extensive and captures a 
range of transportation modes, it is inherently skewed 
due to participants using their regular means of trans-
portation during the data collection period. This 
imbalance is evident in Figures 2 and 3, where signifi-
cantly more data was collected onboard buses com-
pared to other transportation modes. The disparity 
among classes allows us to categorize them into 
majority classes and minority classes. Such imbalances 
can pose challenges, as classifiers may become biased 
toward majority classes (Kaur et al., 2019). To address 
this issue, we employed resampling techniques to 
reduce dataset skewness. Resampling methods have 
proven effective in supervised learning, often outper-
forming bagging and boosting techniques (Kaur et al., 
2019). In this study, we utilized SMOTE (Synthetic 
Minority Over-sampling Technique) (Chawla et al., 
2002) due to its widespread adoption and demon-
strated robustness in the research community (Chen 
et al., 2017; Matthes & Springer, 2022). Prior to 
resampling, we re-labeled certain classes with signifi-
cantly less data (e.g., inside, outside, and e-scooter) 
into a single composite class, other. This composite 
class serves as a control, distinguishing instances 
where travelers are not aboard public transportation. 
Both the majority class (bus) and the composite class 
(other) were left unchanged. The dataset was then split 
into training (66%) and test (33%) sets. We over-
sampled the minority classes (bicycle, boat, car, metro, 
train, and tram) in the training set by 20%. The 
resulting features consist of each sensor aggregated 
with the aforementioned statistical functions. The final 
datasets comprise eight transportation classes and 121 
features for Android and 77 features for iOS. These 
features were derived by applying the statistical 

aggregations listed in Table 2 to the magnitude data 
all the sensors shown in Table 1, except activity recog-
nition. For example, one feature represents the max-
imum acceleration within a window segment, while 
another captures the average magnetic field calculated 
over the same segment. To incorporate data from 
pressure sensors in our evaluation, we limited the ana-
lysis to devices equipped with this sensor, significantly 
reducing the dataset size.

Additionally, the use of a 10-second window func-
tion aggregated all sensor values within each window 
into a single value per feature, further decreasing the 
data points. The final dataset for analysis comprised 
130,405 rows of data: 39,974 from Android and 
90,431 from iOS devices. The disproportionate repre-
sentation of iOS data stems from the prevalence of air 
pressure sensors in iOS devices, whereas many 
Android devices lack this sensor.

Feature ranking for android
To rank the importance of features in the Android 
dataset, we applied the previously described frame-
work to all 121 features described in Tables 1 and 2.

Figures 5 and 6 display the average rank for each 
sensor and aggregation function, respectively, as eval-
uated by each importance method included in the 
proposed framework. Figures 7 and 8 provide an 
aggregated view of the average rank for sensors and 
functions across all methods, while Figure 9 shows the 
top 30 ranked features (sensor-function combina-
tions). From the results, we observe that acceleration, 
pressure, and magnetic field are the three highest- 
ranked sensors, while range, interquartile range, and 
standard deviation are among the most influential 
aggregation functions. These findings highlight the 
critical sensors and statistical functions that contribute 
most effectively to transport mode detection on 
Android devices.

Feature ranking for iOS
To rank the importance of features in the iOS dataset, 
we applied the previously described framework to all 
77 features derived from the combination of sensors 
and functions described in Tables 1 and 2. Figures 10
and 13 display the average rank for each sensor and 
aggregation function, respectively, as evaluated by 
each importance method in the framework. Figures 11
and 12 provide an aggregated view of the average 
rank for sensors and functions across all methods, 
while Figure 14 shows the top 30 ranked features 
(sensor-function combinations).

Table 2. Statistical aggregations applied to each sensor.
Aggregation function Description

Minimum Smallest value in the segment
Maximum Largest value in the segment
Average Mean value in the segment
Range Difference between maximum and minimum
Variance Variability in the segment
Standard deviation Dispersion around the mean
Kurtosis Measure of data distribution shape
1st quartile 25th percentile of the data
2nd quartile (median) 50th percentile of the data
3rd quartile 75th percentile of the data
Interquartile range Range between 1st and 3rd quartiles
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Figure 6. Average rank of each function for each of the feature importance methods using the Android dataset.

Figure 7. Average rank of each sensor across all feature 
importance methods using the Android dataset.

Figure 8. Average rank of each function across all feature 
importance methods using the Android dataset.

Figure 5. Average rank of each sensor for each of the feature importance methods using the Android dataset.
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From the results, we observe that magnetic field, 
pressure, and acceleration are the three highest-ranked 
sensors, consistent with the Android dataset. However, 
while interquartile range remains a top-ranked aggrega-
tion function, the rankings of range and standard devi-
ation are lower compared to Android. These findings 
underscore both similarities and platform-specific dif-
ferences in feature importance for TMD.

Evaluation of framework

In the preceding section, we ranked the importance 
and impact of various sensors and aggregation 

functions for transport mode detection. This section 
evaluates the practicality and effectiveness of the pro-
posed framework, EFR-TMD by examining how the 
removal of low-importance features, as identified by 
the framework, affects model performance. 
Specifically, we train classifiers using the complete set 
of available features and then iteratively remove 25% 
of the features, starting with those ranked lowest in 
importance. We evaluate the changes in training time, 
inference time, and classification accuracy at each step 
of feature removal. The evaluation includes a diverse 
set of classification algorithms: convolutional neural 

Figure 9. Average rank of each composite feature across all feature importance methods using the Android dataset.

Figure 10. Average rank of each sensor for each of the feature importance methods using the iOS dataset.
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networks (CNNs), multilayer perceptrons (MLPs), 
long short-term memory networks (LSTMs), Random 
Forest (RF), and XGBoost (XGB). The focus of this 
evaluation is not on optimizing the models themselves 
but on assessing the impact of the feature reduction 
process facilitated by EFR-TMD. To ensure consist-
ency, all neural network models were implemented 
with a basic architecture. Each model consisted of a 
single input layer with 32 nodes/filters and a single 
output layer. The rectified linear unit (ReLU) activa-
tion function was applied to the input layer, while the 

softmax activation function was used in the output 
layer for multi-class classification. All models were 
compiled using the Adam optimizer and categorical 
cross-entropy as the loss function. Training was con-
ducted over 150 epochs for each model. We trained 
models separately on the Android and iOS subsets of 
the identified features from the NOR-TMD dataset. 
The training dataset, consisting of 66% of the data, 
was employed to train the models, while the test set, 
consisting of 33% of the data, was utilized to evaluate 
the models. To enable effective training across all 
model architectures, we employed a MinMaxScaler to 
normalize the features by linearly scaling them within 
a fixed range. This widely recognized approach has 
been shown to improve model performance and sta-
bility, outperforming other scaling techniques in pre-
vious studies (Raju et al., 2020).

Android

The baseline models trained on the Android data uti-
lized all 121 features, establishing a benchmark to rep-
resent model performance without applying any 
feature reduction.

Two distinct approaches were employed for feature 
selection: one based on individually ranked sensors 
and aggregation functions, and another using a ranked 
list of composite features. For the sensor-function 
ranking approach, a matrix was constructed compris-
ing all possible combinations of sensors and aggrega-
tion functions (121 features in total). Feature subsets 
were created containing approximately 75%, 50%, and 

Figure 11. Average rank of each sensor across all feature 
importance methods using the iOS dataset.

Figure 12. Average rank of each function across all feature 
importance methods using the iOS dataset.

Figure 13. Average rank of each function for each of the feature importance methods using the iOS dataset.
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25% of the highest-ranked sensors combined with the 
75%, 50%, or 25% highest-ranked aggregation func-
tions. As 75%, 50%, or 25% of 11 sensors or aggrega-
tion functions do not result in whole numbers, these 
values were rounded up. These feature subsets were 
used to train models (CNN, MLP, LSTM, XGBoost, and 
Random Forest) to classify eight transportation modes: 
bicycle, boat, bus, car, metro, train, tram, and a compos-
ite other class. For each model, we recorded the training 
time, classification accuracy on unseen data, and the 
average inference time across 10,000 predictions. The 
results for this approach are presented in Table 3. For 
the composite feature ranking approach, three add-
itional feature sets were created, containing 75%, 50%, 
and 25% of the top-ranked composite features. These 

subsets were also evaluated against the benchmark, with 
results presented in Table 4.

iOS

We applied the same two approaches for feature rank-
ing to the iOS dataset as were used for the Android 
data. In the first approach, feature subsets were con-
structed using 75%, 50%, and 25% of the highest- 
ranked individual sensors combined with 75%, 50%, 
and 25% of the highest-ranked aggregation functions, 
respectively. As with the Android dataset, the number 
of sensors and functions was rounded up to the near-
est integer. Models (MLP, CNN, LSTM, XGBoost, and 
Random Forest) were trained using these feature sub-
sets and compared against the benchmark, which con-
sisted of all 77 features.

In the second approach, subsets were created from 
the 75%, 50%, and 25% highest-ranked composite fea-
tures. For each model, we recorded the training time, 
classification accuracy on unseen data, and the average 
inference time across 10,000 predictions. Training and 
inference times are reported in seconds, and accuracy 
is presented as a percentage. The results for models 
trained with subsets based on individual sensor and 
aggregation function rankings are presented in Table 
5, while those for subsets based on composite features 
are shown in Table 6.

Discussion

This study introduced a novel dataset, NOR-TMD, 
along with a systematic framework for feature evalu-
ation and reduction in transport mode detection 

Figure 14. Average rank of each composite feature across all feature importance methods using the iOS dataset.

Table 3. Sensor and function ranking evaluation on Android.

Algorithm # Features
Inference  
time (ms)

Training  
time (m) Accuracy (%)

CNN (100%) 121 55.56 5.38 93.47
CNN (75%) 81 45.96 4.59 93.43
CNN (50%) 36 46.65 3.65 90.60
CNN (25%) 9 45.31 2.80 80.31
LSTM (100%) 121 47.32 69.36 93.77
LSTM (75%) 81 48.24 46.55 93.74
LSTM (50%) 36 47.58 21.25 93.84
LSTM (25%) 9 46.45 8.34 82.78
MLP (100%) 121 47.03 3.19 93.03
MLP (75%) 81 45.63 3.19 93.94
MLP (50%) 36 46.02 2.92 90.92
MLP (25%) 9 46.24 2.54 80.63
RF (100%) 121 9.34 1.15 96.55
RF (75%) 81 8.86 0.83 96.78
RF (50%) 36 8.23 0.57 95.13
RF (25%) 9 7.63 0.27 83.20
XGB (100%) 121 1.21 0.48 98.28
XGB (75%) 81 1.20 0.32 98.28
XGB (50%) 36 0.98 0.14 97.42
XGB (25%) 9 0.66 0.05 84.10
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systems, EFR-TMD. By leveraging data collected from 
both Android and iOS devices, the framework success-
fully identified the most impactful sensors and aggrega-
tion functions. The evaluation demonstrated that 
feature reduction guided by our framework significantly 
reduces computational costs while maintaining com-
petitive accuracy, making it particularly suitable for 
real-time and on-device processing. In this section, we 
critically compare NOR-TMD with existing datasets 
and discuss its practical applicability, along with the 
proposed framework and the insights derived from it.

Dataset comparison

We have proposed a new dataset to address some of the 
limitations of existing datasets, including lack of 

geographical, sensor, and device diversity. NOR-TMD 
exhibits a wider variety of transportation modes, as well 
as including annotations as to the placement of the 
device during data collection (e.g., hand or pocket). 
NOR-TMD is collected by regular travelers during their 
normal commuting process, making the collected data 
as realistic as possible. Maybe more importantly, NOR- 
TMD includes data collected on iOS devices, which 
none of the existing publicly available datasets contain. 
As previously mentioned, the main datasets that exist, 
including smartphone sensor data captured in different 
modes of transportation are the HTC Transport Mode 
dataset (Yu et al., 2014), Sussex-Huawei Locomotion 
(SHL) dataset (Gjoreski et al., 2018), the US-TMD data-
set (Carpineti et al., 2018) and the Collecty dataset 
(Erdeli�c et al., 2023). Table 7 exhibits the main differen-
ces between these preexisting datasets and our proposed 
dataset. The development of NOR-TMD was motivated 
by limitations in existing publicly available datasets for 
transport mode detection, such as the HTC, SHL, US- 
TMD, and Collecty, datasets. Each of these datasets 
contributes valuable insights but exhibits significant 
constraints in terms of device diversity, participant rep-
resentation, and transportation mode coverage, which 
hinder their generalizability and practical applicability. 
The HTC dataset stands out for its scale, with 8,311 h of 
data collected from 224 participants, yet it is restricted 
to a single device type. This lack of device diversity 
poses a challenge since sensor data quality and variabil-
ity differ across devices due to differences in hardware, 
operating systems, and manufacturer-specific sensor 
implementations (Lane et al., 2010).

Similarly, the SHL dataset, while including data 
from 15 sensors, suffers from limited participant 

Table 4. Composite feature ranking evaluation Android.

Algorithm # Features
Inference  
time (ms)

Training  
time (m) Accuracy (%)

CNN (100%) 121 55.56 5.38 93.47
CNN (75%) 91 49.25 4.37 94.5
CNN (50%) 61 52.17 4.38 92.63
CNN (25%) 31 49.64 3.22 90.17
LSTM (100%) 121 47.32 69.36 93.77
LSTM (75%) 91 59.03 58.75 90.17
LSTM (50%) 61 52.34 41.07 91.19
LSTM (25%) 31 50.15 20.6 90.25
MLP (100%) 121 47.03 3.19 93.03
MLP (75%) 91 55.26 3.19 94.15
MLP (50%) 61 50.66 2.93 92.5
MLP (25%) 31 47.7 2.66 90.27
RF (100%) 121 9.34 1.15 96.55
RF (75%) 91 8.87 0.86 96.57
RF (50%) 61 8.34 0.66 96.16
RF (25%) 31 7.9 0.45 95.41
XGB (100%) 121 1.21 0.48 98.28
XGB (75%) 91 1.56 0.42 98.33
XGB (50%) 61 2.35 0.57 98.1
XGB (25%) 31 0.71 0.1 97.16

Table 5. Sensor and function ranking evaluation iOS.

Algorithm # Features
Inference  
time (ms)

Training  
time (m) Accuracy (%)

CNN (100%) 77 48.64 9.35 77.49
CNN (75%) 54 52.89 8.78 79.11
CNN (50%) 24 49.47 7.73 76.73
CNN (25%) 6 46.7 6.32 67.09
LSTM (100%) 77 53.86 113.13 81.38
LSTM (75%) 54 54.26 163.2 87.77
LSTM (50%) 24 50.07 41.1 81.35
LSTM (25%) 6 46.67 16.02 72.28
MLP (100%) 77 51.22 7.37 79.51
MLP (75%) 54 51.69 7 77.14
MLP (50%) 24 48.49 6.46 76.59
MLP (25%) 6 44.94 6.37 67.07
RF (100%) 77 9.29 1.85 90.54
RF (75%) 54 8.57 1.63 89.08
RF (50%) 24 8.16 0.88 88.72
RF (25%) 6 7.69 0.42 81.76
XGB (100%) 77 1.3 0.62 93.06
XGB (75%) 54 1.4 0.53 91.11
XGB (50%) 24 1.12 0.24 89.47
XGB (25%) 6 0.81 0.1 78.5

Table 6. Composite feature ranking evaluation iOS.

Algorithm # Features
Inference  
time (ms)

Training  
time (m) Accuracy (%)

CNN (100%) 77 48.64 9.35 77.49
CNN (75%) 58 53.97 9.37 78.15
CNN (50%) 39 50.65 8.38 78.81
CNN (25%) 20 43.43 6.74 77.31
LSTM (100%) 77 53.86 113.13 81.38
LSTM (75%) 58 56.8 88.93 82.4
LSTM (50%) 39 49.49 62.6 83.24
LSTM (25%) 20 43.42 31.41 80.6
MLP (100%) 77 51.22 7.37 79.51
MLP (75%) 58 53.41 7.37 78.55
MLP (50%) 39 46.25 7.37 77.96
MLP (25%) 20 43.54 5.91 76.76
RF (100%) 77 9.29 1.85 90.54
RF (75%) 58 8.7 1.59 89.87
RF (50%) 39 8.14 1.33 88.8
RF (25%) 20 7.73 0.83 89.08
XGB (100%) 77 1.3 0.62 93.06
XGB (75%) 58 1.42 0.56 92.35
XGB (50%) 39 1.18 0.33 90.79
XGB (25%) 20 0.83 0.17 88.86
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diversity (three individuals) and is collected exclu-
sively on one device type, significantly limiting its 
generalizability as diverse participants contribute data 
that reflect distinct travel behaviors and patterns, 
which can vary significantly based on demographics 
(Alharbi & Thornton, 2015), geographical regions 
(Nanchen et al., 2023), and individual habits (Weiss & 
Lockhart, 2012). In real-world scenarios, users interact 
with their devices in various ways, such as holding 
them in hand, placing them in a pocket, or storing 
them in a bag. These different placements significantly 
influence sensor readings (Reddy et al., 2010). 
Consequently, labeling the location of the device dur-
ing data collection can provide valuable contextual 
information. Apart from the NOR-TMD dataset, the 
SHL dataset is the only other dataset that includes 
device location information during data collection. 
The SHL dataset provides four labels for device place-
ment, whereas the NOR-TMD dataset offers three. 
Gjoreski et al. (2018) employed a rigorously controlled 
data collection protocol, mandating that devices be 
placed exclusively in specific, predefined locations. 
While this methodology is justifiable for minimizing 
noise and enhancing the reliability of comparisons, it 
can be argued that adopting a more flexible approach, 
as exemplified by the NOR-TMD dataset, may pro-
duce data that more accurately represents real-world 
usage scenarios. The NOR-TMD dataset incorporates 
an “other” label, allowing participants to place devices 
in unconventional locations such as backpacks, purses, 
or even the center console of a car while driving. This 
approach potentially leads to more diverse data, which 
may improve classification accuracy in real-world 
applications, where users are likely to store devices in 
a variety of locations. In contrast, solutions developed 
using the SHL dataset may struggle to accurately clas-
sify modes of transportation when devices are stored 
in locations outside those specifically included in their 
controlled study. The HTC dataset exhibits limited 
geographical diversity, as it was collected from only 
two distinct avenues. In contrast, the SHL dataset 

encompasses a broader geographical range, primarily 
spanning from Brighton, UK, to London, UK. The 
study by Erdeli�c et al. (2023) does not specify the 
devices used or the geographical locations from which 
the Collecty dataset was obtained. Similarly, Carpineti 
et al. (2018) provides no details regarding the geo-
graphical locations of its data collection. The NOR- 
TMD dataset includes data collected from two cities 
in Norway. While this is similar to the SHL dataset in 
terms of the number of locations, the geographical 
areas differ significantly. The SHL dataset covers 
regions in close proximity to each other, whereas the 
two cities in the NOR-TMD dataset, Oslo and Bodø, 
are much farther apart. Consequently, the NOR-TMD 
dataset can be considered more geographically diverse 
than the SHL dataset. US-TMD and Collecty address 
device diversity to some extent, incorporating data 
from 11 devices and spanning 13 and 15 participants, 
respectively. However, these datasets remain relatively 
small in scale compared to HTC and SHL, and their 
limited sensor diversity restricts their utility for 
exploring the full range of transport mode detection 
use cases. NOR-TMD addresses these gaps by provid-
ing data from 57 unique device models across iOS 
and Android platforms, collected from 101 diverse 
participants. This diversity enhances the dataset’s gen-
eralizability (Gong et al., 2019), enabling it to support 
robust transport mode detection models capable of 
performing across a variety of hardware and software 
configurations. Including data from iOS devices is 
particularly significant, as none of the existing datasets 
incorporate iOS data, despite its prevalence in real- 
world usage (Grossi, 2019). The presence of iOS data 
enables the development of cross-platform solutions 
that remain performant regardless of the operating 
system, a critical requirement for practical deploy-
ment. In terms of transportation modes, existing data-
sets show notable limitations. For example, the HTC 
and SHL datasets cover major modes like buses and 
trains but omit others such as boats or e-scooters. 
Collecty offers more diversity by including less 

Table 7. Overview of publicly available sensor-based datasets.
Dataset Modes Sensors OS DL N.UD N.UP Hours

HTC S, W, R, BI, MC, C, B, M, TR A, M, G Android N/A 1 224 8311 h
SHL S, W, R, BI, C, B, M, TR A, M, G, O, GR, L, P, AR,  

AL, BL, BT, WR, SR, CR, GPS, AU
Android Hand, Hips,  

Torso, Backpack
1 3 2812 h

US-TMD S, W, R, B, TR A, M, G, GR, AL, P, AU, PX Android N/A 11 13 31 h
Collecty W, R, BI, C, B, TR, TM, E A, M, G, L Android N/A N/A 15 242 h
NOR-TMD B, M, TR, TM, BI, BO, C,  

E, I, O
A, M, M Unc., G, G Unc., RV,  

GV, RR, Q, GR, L, P, AR
Android, iOS Hand, Pocket,  

Other
57 101 609 h

DL¼ device placement during data collection. N.UD¼ number of unique devices. N.UP¼ number of unique participants. Modes ¼ (bus (B), tram (TM), 
train (TR), metro (M), car (C) Bike (BI), still (S), walk (W), run (R), motorcycle (MC), E-scooter (E), boat (BO) Inside (I), outside (O)). sensors ¼ (accelerom-
eter (a), magnetometer (M), gyroscope (G), pressure (P), gravity (GR), linear acceleration (L), ambient light (AL), orientation (O), rot. vector (RV), game 
rot. vector (GV), rotation rate (RR), quaternion (Q) Global positioning system (GPS), satellite reception (SR), Wi-Fi reception (WR) Mobile phone cell 
reception (CR), battery level (BL), battery temperature (BT), audio (AU), proximity (PX), built-in activity recognition (AR)).
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common modes like e-scooters, yet none of these 
datasets, including US-TMD, comprehensively address 
transport modes prevalent in specific geographical 
regions, such as seagoing vessels, which is problematic 
since this represents a regular mode of transportation 
in many areas Nikolic and Bierlaire (2017). NOR- 
TMD expands this scope by including 10 transport 
modes, such as boats and trams, alongside contextual 
labels like “inside” and “outside,” enabling finer differ-
entiation between activities. Sensor diversity is another 
critical area where NOR-TMD demonstrates an 
advantage. The SHL dataset provides extensive sensor 
data, including accelerometers, gyroscopes, and pres-
sure sensors, but the HTC dataset is limited to three 
sensors, and Collecty includes only four. NOR-TMD 
balances sensor diversity with practical relevance, inte-
grating data from 12 sensors on Android and 8 on 
iOS, including accelerometers, magnetometers, gyro-
scopes, and pressure sensors. This enables detailed 
analysis of sensor-specific contributions to transport 
mode detection performance while addressing gaps in 
other datasets.

Framework for feature evaluation and reduction

The proposed feature evaluation framework, EFR- 
TMD, introduces an ensemble-based methodology to 
identify and rank critical features for transport mode 
detection. EFR-TMD integrates multiple feature rank-
ing techniques, including Permutation Importance 
(PI), Shapley Additive Explanations (SHAP), Mutual 
Information (MI), the ANOVA F-test, and 
Classification and Regression Tree (CART). These 
techniques individually assess the importance of fea-
tures before their outputs are consolidated and nor-
malized to produce a more robust and universally 
applicable feature importance score. Existing 
approaches to feature extraction and selection often 
rely on experimentation, domain expertise, or intu-
ition (Chen et al., 2017; Nirmal et al., 2021; Sankaran 
et al., 2014). Some studies employ ablation analysis, 
where a model is trained on the full feature set, and 
features are systematically removed until a significant 
drop in accuracy is observed (Hemminki et al., 2013). 
Other studies employ sequential forward selection 
(SFS) which operates in the opposite manner, starting 
with an empty feature set and iteratively adding fea-
tures until further additions fail to improve accuracy 
(Xiao et al., 2019). However, these methods are lim-
ited in their generalizability, as they typically indicate 
the relevance of features for a specific algorithm but 
do not necessarily translate well to other contexts. 

Some researchers have adopted more general feature 
importance techniques, such as InfoGainAttributeEval 
(Guvensan et al., 2017), but these approaches often 
produce significantly divergent results. Consequently, 
transferring insights to a different class of algorithm 
becomes challenging, necessitating time-consuming 
feature evaluation even when working with familiar 
datasets. To our knowledge, no existing work system-
atically ranks features in a manner that is both generic 
and widely applicable. This challenge is further com-
pounded by the diverse range of sensors and aggrega-
tion functions utilized in the literature. EFR-TMD 
addresses these limitations by leveraging an ensemble 
of feature ranking techniques to deliver generic fea-
ture importance scores that are independent of spe-
cific models. As evidenced in our results, up to 75% 
of the least important features can be removed with 
only marginal impacts on accuracy (Tables 4 and 6). 
Moreover, the accuracy trends across different models 
when features are removed are remarkably consistent, 
underscoring the framework’s ability to generalize its 
rankings beyond individual model architectures. This 
versatility makes EFR-TMD a valuable tool for trans-
port mode detection applications.

Insights derived from EFR-TMD

Through the use of EFR-TMD we ranked the impor-
tance of sensors and aggregation functions individu-
ally both from Android and iOS platforms, for 
transport mode detection. The literature reveals con-
siderable variation in sensor usage for classification. 
For instance, some studies combine accelerometers 
with magnetometers (Kamalian & Ferreira, 2022), 
while others exclude magnetometers in favor of linear 
acceleration and rotation vectors (Alotaibi, 2020). Our 
ranking of sensor importance on Android reveals that 
the least significant sensors are the game rotation vec-
tor, linear acceleration, and geomagnetic rotation vec-
tor, all averaging low ranks (Figure 7). Evaluation 
results (Table 3) demonstrate that excluding these sen-
sors minimally impacts accuracy, and in some cases, 
improves it. Models trained with only the top 50% of 
ranked sensors maintain benchmark-level accuracy, 
indicating that sensors in the lower 50% contribute 
negligible new information. The accelerometer, pres-
sure, and magnetic field sensors consistently rank 
highest. While many works utilize accelerometers 
(Cardoso et al., 2016; Nirmal et al., 2021), fewer 
include magnetic field (Chen et al., 2017) or pressure 
sensors (Sankaran et al., 2014). Incorporating these 
could significantly enhance accuracy, as suggested by 
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our findings. Aggregation function importance rank-
ings (Figure 8) indicate that range, interquartile range, 
and standard deviation are most impactful, with min-
imal variation among functions compared to sensors. 
Specific sensors, however, benefit more from certain 
functions. For example, variance ranks highly for 
pressure, while the first quartile is critical for gyro-
scope data. These insights highlight the potential ben-
efits of tailoring aggregation functions to specific 
sensors. On iOS, results align closely with Android, 
with magnetic field, pressure, and accelerometer sen-
sors ranking highest. Gravity, quaternion, and rotation 
rate sensors, however, are the least significant (Figure 
11). Excluding the bottom 25% of sensors on iOS 
(e.g., gravity) minimally impacts accuracy (Table 5), 
but removing higher-ranked sensors, such as pressure 
or gyroscope, results in substantial accuracy drops. 
Our findings suggest that the rotation vector on 
Android, equivalent to a combination of rotation rate 
and quaternion on iOS, slightly outperforms the gyro-
scope in certain contexts. Aggregation function rank-
ings on iOS (Figure 12) show similarities to Android, 
with interquartile range and minimum value perform-
ing well. However, differences arise due to platform- 
specific sensor behaviors and data characteristics. For 
instance, accelerometers on Android measure in 
meters per second squared (m=s2), while iOS devices 
use gravitational increments. These discrepancies 
influence aggregation function effectiveness, as seen in 
the higher importance of quartile-based functions for 
iOS data. Our findings provide a ranked overview of 
sensor and aggregation function importance for trans-
port mode detection across platforms. The accelerom-
eter, magnetic field, and pressure sensors emerge as 
universally significant, with the gyroscope also proving 
beneficial. Reducing features improves training and 
inference efficiency, directly impacting energy con-
sumption, a critical consideration for resource- 
constrained devices. As gyroscopes can consume 
significantly more power than other sensors (Yu et al., 
2014), their inclusion should be carefully evaluated. 
By prioritizing high-importance features, researchers 
can develop lightweight, energy-efficient models with-
out sacrificing accuracy.

Limitations

A significant limitation of NOR-TMD is the imbal-
ance in data distribution across transport modes, devi-
ces, and users, which reflects the natural variability in 
participants’ travel behaviors. While this contributes 
to the realism of the dataset, it also introduces 

potential biases that must be carefully managed during 
model development. Another challenge lies in the 
irregular sampling frequency of sensor data, a conse-
quence of device-native collection frameworks. This 
variability can impact model reliability, necessitating 
preprocessing techniques such as interpolation to 
standardize input data. Although this issue can be 
mitigated through appropriate preprocessing, it 
remains a consideration in the dataset’s design. 
Additionally, the dataset lacks location and audio 
data, which were collected but could not be included 
in the publicly available dataset due to privacy con-
cerns. While the dataset spans a broader geographical 
area compared to existing datasets, incorporating data 
from a wider range of countries could further enhance 
its diversity in terms of physical environments, vehicle 
types, travel patterns, and user behaviors.

EFR-TMD also has its limitations. While the frame-
work has been evaluated using the NOR-TMD dataset, 
its performance on datasets with differing characteris-
tics has yet to be investigated. While EFR-TMD was 
tested across a wide array of commonly used algo-
rithms, it does not encompass all possible models, 
raising the possibility that results may vary when 
applied to substantially different algorithms. Another 
limitation is the scope of features considered during 
the identification of universally applicable sensors and 
aggregation functions for transport mode detection. 
The evaluation included only features derived from 
the time domain. Had frequency-domain features 
been incorporated, the results might have differed. 
Another aspect is the sizes of the windows used for 
segregating the data. Furthermore, advanced process-
ing techniques, such as smoothing, were not applied, 
as different sensors often require tailored processing 
methods. Our goal was to evaluate all features in a 
generic and consistent manner. However, the absence 
of sensor-specific preprocessing may have influenced 
the results. Introducing appropriate processing techni-
ques for each sensor type could potentially alter the 
observed importance of individual sensors and pro-
vide further insights into their relative contributions.

Conclusion and future work

This study addresses key challenges in transport mode 
detection by introducing the novel NOR-TMD dataset 
and a systematic feature evaluation framework, EFR- 
TMD. The NOR-TMD dataset enhances the diversity 
and generalizability of transport mode detection 
research by incorporating data from both Android 
and iOS devices, expanding transportation mode 
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coverage, and capturing real-world usage scenarios. 
Complementing this, the EFR-TMD framework 
employs an ensemble-based approach to identify and 
rank critical features, enabling the development of 
efficient and accurate transport mode detection mod-
els. Evaluation results reveal that up to 75% of the 
least important features identified by EFR-TMD can 
be removed with minimal impact on accuracy, signifi-
cantly reducing computational costs and enabling 
resource-efficient, on-device processing. Despite limi-
tations such as dataset imbalances and the focus on 
time-domain features, this work contributes valuable 
insights for the design of scalable, privacy-preserving, 
and generalizable solutions in intelligent transporta-
tion systems.

Future research should apply EFR-TMD to more 
diverse datasets and extend the analysis to include 
frequency-domain features, further broadening its 
applicability. Additional areas for future exploration 
include evaluating the applicability of EFR-TMD in 
other domains, such as human activity recognition or 
gesture recognition, where challenges related to fea-
ture selection and generalizability are similarly critical. 
Further studies should evaluate frequency-domain fea-
tures to validate the generalizability of the identified 
sensors and aggregation functions. Expanding the ana-
lysis to include a wider range of algorithms would 
also provide deeper insights into the versatility of 
EFR-TMD. Additionally, while 10-second windows 
have been effective, exploring the relationship between 
window configurations and feature importance could 
reveal new optimization opportunities. Such investiga-
tions would further advance the robustness and 
applicability of the proposed framework. Future stud-
ies should also build on the insights derived from the 
feature evaluation and investigate the potential for 
cross-platform solutions.
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Abstract—In recent times, there has been a significant surge
in the popularity of machine learning algorithms and their
applications. Machine learning is applied to more and more
aspects of daily life, extending their applications to numerous
areas. One such application is public transportation. Lately,
researchers have utilized smartphone sensor data to develop
machine learning models for transport mode detection (TMD) in
order to optimize public transportation in terms of streamlining
ticket purchase, in addition to facilitating a more comprehensive
understanding and analysis of human travel patterns. There are
multiple works that propose solutions for TMD, however very
few of these can be executed locally on device, let alone run on
multiple operating systems. As such, in this paper we propose
a lightweight cross-platform model for TMD, able to infer the
mode of transportation on both Android and iOS. The model
is implemented on-device and does not require any external
equipment or a centralized solution to function. The proposed
solution is then implemented on a selection of devices, which
are tested on various public transport routes. We evaluate the
actual accuracy based on predictions made on-device on board
actual public transport vehicles, in addition to investigating the
inference time and estimated energy consumption. The results of
this work demonstrates the possibility of training lightweight
platform-agnostic models for TMD using very few features.
Moreover, the findings of this study can contribute towards
improving existing in-vehicle presence detection solutions for
automated ticketing.

Index Terms—mobile, on-device, transport mode detection,
real-life evaluation, sensors, machine learning, public transporta-
tion

I. INTRODUCTION

TRANSPORT mode detection (TMD) is the capability to

computationally infer a user’s mode of transportation.

That is, to classify which means of transportation a user is

currently using. TMD is similar to human activity recognition

(HAR) but while human activity recognition is concerned

with inferring activities such as walking, jumping, running

and falling. TMD focus on inferring contextual information

regarding the mode of transportation a user is situated in, such

as being on a bus, tram, train or similar. Accurate identification

of contextual information such as the vehicle a user is located

in, opens up for a variety of new applications in intelligent

transportation such as enabling contextual marketing [1],

facilitating improved travel pattern analysis [2] and automated

fare collection [3]. TMD can act as a trigger in order to

issue public transport tickets automatically by either initiating

data transfer with a on-board device [4] or by correlating the

users position to that of public transport vehicles, through a

cloud service. Similarly, TMD can also facilitate enhanced

travel metrics which can contribute significantly to travel

pattern analysis. This kind of functionality will equip public

transport operators, municipalities and other stakeholders

with the necessary knowledge to streamline public transport

scheduling and operational control, in addition to being able

to plan and build more efficient routes, which in turn can lead

to a better public transport offer for the general population.

Modern research into TMD relies to a large degree on

machine learning algorithms trained on inertial mobile sensor

data such as acceleration, magnetic field and gyroscopic data

and a variety of solutions do already exists [5]–[7]. However,

many of these solutions are designed to run in a centralized

solution. This can be expensive for the operators in terms

of hardware and maintenance. Furthermore, this approach

can also be expensive for travelers relating to network costs.

Moreover, centralized solutions can be problematic if the

traveler resides in underground public transport systems which

are often out of range of Wi-Fi networks [8]. An alternative

approach is to run the TMD model locally, on the traveler’s

device, similar to that of the built-in activity recognition

functionality in the Android and iOS operating systems. This

way we avoid unnecessary data transfer, in addition to omit

the need for large computational power from the operators

side in order to receive and process the continuous stream of

sensor data from travelers. Furthermore, on-device solutions

alleviates privacy concerns [9] since the data collected on

a device does not have to leave the device. Moreover, with

the model running on-device we omit any kind of network

latency and classifications can be made in near real-time [9].

Different on-device solutions have been proposed, however

most of these solutions are evaluated by using a holdout set

from their dataset used for training. While this is a sound

approach if the data is representative to that of the real

world, not many datasets are. In fact, there exists very few

openly available datasets with sensor data collected onboard

public transport vehicles with the purpose of training machine

learning algorithms for TMD. Those that do exist [10]–[12]

have various flaws, such as device homogeneity, lack of

sensors, lack of transport modes, geographical limitations and

so on. Therefore by evaluating models using a holdout set

in this context can be misleading and the evaluated accuracy

may not be true in a real-world setting. To our knowledge,

all proposed solutions for on-device transport mode is also

platform-specific, meaning that the models are tailored for

working on either iOS or Android and not both. In our

previous work we investigated the importance of all sensors

on Android and iOS in the context of TMD and we saw that

the most important sensors are the same across both platforms

[13]. These results indicate that it should be possible to build
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a platform-agnostic model, able to run on both platforms.

The contributions of this paper are the following:

• Main objective: Presenting a lightweight platform-

agnostic model for local transport mode detection on

resource constrained devices.

• Second objective: Evaluation of model performance on

distinguishing between public transportation modes and

alternative modes

• Third objective: Evaluation of model performance on

differentiating between different public transportation

modes

The model is trained on a large dataset consisting of data

from over one hundred different iOS and Android devices.

We developed and implemented the solution through native

mobile applications on both Android and iOS and evaluated

the actual accuracy, inference time, as well as estimating the

energy impact. In the next section we review past and ongoing

efforts towards TMD, with a focus on features and real-life

implementations. In section III we describe the approach taken

regarding feature selection, preprocessing, model architecture

and implementation details. In section IV we present the re-

sults, while in section V we discuss our findings. In section VI

we conclude our work with pointers towards future research.

II. RELATED WORK

There have been substantial research efforts in the past

years towards accurate TMD and a variety of approaches

have been proposed. Some approaches takes advantage of

coarse-grained network data such as call detail records (CDR)

which generates coarse geographical location data [14].

Others take advantage of WAP (Wireless access protocol)

[15] or GSM data and base station information [16]. However,

while network information has proven useful, the most recent

studies focus on location data (GPS) or inertial and ambient

smartphone sensor data, either separately or in combination

[15]. With the recent developments in the field of machine

learning, it is no surprise that most works uses this data to

train machine learning algorithms in order to classify the

mode of transportation. There is a large variety in machine

learning algorithms that have been applied in this field and the

majority of the basic algorithms have been applied in the field

of transport mode detection [17]. Some examples are decision

trees [15], [18], random forest [19], k-nearest neighbours

[20], bayesian inference [14], hidden markov model [5],

support vector machines [17] and a variety of neural networks

[21], [22]. In addition, more specialized algorithms such as

gradient boosted trees [23], recurrent neural networks (RNN)

[24] and convolutional neural networks (CNN) [22] have also

been taken advantage of in order to achieve high accuracy

transport mode inference. These models are then placed either

on a server [23] which requires sensor data to be transmitted

over the network in order to be classified, or on device [25].

These models require ambient and inertial sensor data

in order to classify the mode of transportation and there

are large discrepancies in terms of which sensors are being

taken advantage of in the literature. A large portion of the

proposed solutions employs acceleration in their models [15],

[19], [22], [23], [25]. Some works combine acceleration with

data from the magnetometer [19] or gyroscope [26], [27].

While other works also incorporates other sensors such as

rotation vectors, orientation sensor, linear acceleration [1] or

gravity [22]. Very few works incorporate air pressure [7],

[21], [22] even though employing barometer data can result

in higher accuracy [17]. TMD can be viewed as a sub-field

of human activity recognition (HAR) [9] and data from these

sensors are usually segmented using a window function [15],

[28], [29], according to best practices for human activity

recognition [30]. Window size is also linked to inference time

[31] which is important to keep in mind when segmenting the

data. This data is then aggregated using a variety of statistical

functions such as variance [28], mean [15], [16], [19], [20],

median [15], minimum and maximum values [15], [19],

[20], kurtosis [15], standard deviation [19], percentiles [32],

quartiles [29] and interquartile range [23]. Similar to the large

diversity in feature engineering techniques, there are also

infinite possibilities when it comes to tuning hyperparameters

and the architecture of the models. A structured approach

to find the optimal configuration is using grid search [33]

which is a technique to train and evaluate a model for each

combination of pre-defined parameters. However, very few

works employ this approach due to the technique being very

resource and time consuming.

While there have been a substantial research effort towards

accurate TMD models based on smartphone sensor data, most

of these models are trained on Android data [19], [23], [28],

[32]. Some authors have also taken advantage of iOS data

[7], [16], [21], however, a thorough literature search does not

reveal any work that combines data from the two platforms in

order to propose a cross-platform model for TMD able to run

locally on-device. Building cross-platform solutions that relies

on mobile sensor data is considered challenging [34] due to

the considerable variation in hardware and software between

the different models and manufacturers. The authors of Kos,

Tomažič, and Umek [34] investigated the bias and noise in

accelerometer and gyroscope readings of 116 different devices

and found that while biases vary between different smartphone

models and even within the same model, noise only varies

between the different models but is stable within the same

model. Their results exhibited larger differences between de-

vices running iOS and Android than models running the same

operating system, which can be a challenge when developing

models intended to run on both operating systems. Mobile

devices can be classified as resource-constrained systems due

to their limited computational power and memory capacity

[35] and aspects such as energy consumption needs to be taken

into consideration. On-device energy consumption have been

evaluated in real-life implementations of TMD models [18],

[19]. In the work of [19], the authors concluded that it is

possible to run machine learning models for TMD on-device,

with an equivalent or less energy footprint than other common

applications such as viewing the album application, receiving



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, MONTH YEAR 3

a phone call or using navigation services. However, these

solutions employ GPS, which is known to consume significant

amounts of energy [9]. In general, it is difficult to get an

accurate measurement of the energy consumption on device

since charging, discharge, temperature variations and battery

load all affect the battery performance [36]. This difference

in battery performance was also observed in [18]. Lastly,

TMD can be seen in connection with in-vehicle presence

detection and automated ticketing [37]. In [37] the authors

show that a user’s in-vehicle presence can be established using

TMD over time in combination with GPS. However, other

approaches for in-vehicle presence detection and automated

ticketing approaches[38], [39] that utilizes Bluetooth could

also be enhanced with accurate on-device TMD solutions.

III. APPROACH

This section presents details regarding data processing and

architecture optimization. Additionally, the experiment design

is explained in detail.

A. Feature Selection

This work is based on a previously collected dataset [7],

[21]. This dataset consists of 577 million unique sensor

events, collected by regular travelers using over 100 Android

and iOS devices. Although, this dataset contains all available

sensor data on the two platforms, only in a small subset

of this dataset was interesting in order to make the model

as lightweight as possible. Previous work showed that the

most important sensors in terms of TMD were quite similar

across both operating systems [13]. These results showed

that the most important sensors on both Android and iOS

were acceleration, pressure, magnetic field and gyroscope.

This indicated the possibility to develop a cross-platform

model, able to infer the mode of transportation on both

platforms. As such, in order to develop a lightweight,

cross-platform model for TMD only acceleration, magnetic

field, pressure and gyroscope were used in this work. While

these sensors all exists on both platform there are slight

differences in the units of measurement used on the two

platforms. For instance on Android, acceleration is measured

in meters per second squared (m/s2). On iOS on the other

hand, the accelerometer provides data in g-forces and not

directly in meters per second squared. Similarly, the pressure

sensor on Android provides data in hectopascals (hPa) or

millibars, while on iOS the data is provided in bars. As such,

the data had to be converted to the same units of measurement.

The temporal data then had to be segmented into smaller

chunks before it could be used for training our model. In

previous work the importance of a variety of aggregation

functions have been ranked [13]. Based on these results,

only the seven highest ranked aggregation functions were

used to aggregate the sensor data. As such, only the first,

second and third quartile, in addition to the minimum value,

range, standard deviation and the interquartile range were

used for aggregating the data. Before segmenting the data

the length and overlap of our window function had to be

defined. In previous experiments 10-second windows with a

5-second overlap had been employed with decent results [7],

[21], however we observed a significant increase in accuracy

when we increased the window length, while simultaneously

reducing the overlap. Window length directly impacts the

inference time, resource consumption and model accuracy

[40], Moreover, the pre-inference data collection period on-

device have to mirror the size of the window so a larger

window will increase the required time of on-device data

collection. Through experimentation we found that the best

trade-off between data collection time and accuracy was 15-

second windows with one-second overlap, which is in line with

the findings in [37], where they found an input length of 12.8

seconds to yield the best results. Aggregating each directional

value, in addition to the magnitude, of the four selected

sensors using the seven selected functions, our dataset used for

training now consisted of only 91 different features. The class

distribution of our training data was highly unbalanced and in

order to balance our dataset before training, we took advantage

of the Synthetic Minority Oversampling Technique (SMOTE)

[41] in order to synthesize data in the minority classes.

B. Grid Search

After feature selection and preprocessing, we now had

to find the optimal architecture of our model. An approach

from the literature to evaluate different model configurations

is grid search. Grid search is an approach where applicable

configurations of hyperparameters are defined and then

a model is trained for each possible combination of the

predefined hyperparameters. Using this approach it is possible

to test a large spectrum of architectures. That being said, there

are potentially an infinite amount of possible configurations

and it is therefore necessary to restrict the spectrum of

hyperparameters. Moreover, since a new model is trained for

each possible combination, grid search is highly resource

and time consuming. Based on experimentation and previous

work [33], we defined two sets of parameters related to

different aspects of the model configuration, optimization
and architectural. We then ran two separate grid searches

based on the two sets of parameters. While others have

incorporated a set number of epochs into their grid search

[33], we instead established a threshold at 1000 epochs and

then implemented an early stopping mechanism based on

accuracy with a patience of five epochs, meaning that the

training would finish after five epochs without any positive

change in accuracy. Two separate grid searches enabled us to

run the searches in parallel, which reduced the required time

and resources significantly. One grid search was conducted

for investigating the learning rate, optimizer and initializer

and one search for finding the optimal numbers of nodes

and layers. Note that for each value of nodes, we reduced

the number by 10 % for each consecutive layer. This means

that if the configuration was 800 nodes and two layers,

the first layer would have 800, the second 720 and so on.

Since we trained a cross-platform model on both Android

and iOS data, we had to establish two holdout sets, one

consisting of only Android data and one with only iOS data.
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For each model trained during the grid search, we evaluated

the model on both Android and iOS data. As such, for

one combination of parameters, the accuracy based on the

holdout sets would not necessarily be the same. Based on

the grid search results we chose the architecture yielding the

highest accuracy on both platforms by taking the intersection

of conditions. This architecture yielded over 99% accuracy

based on both the holdout set for Android and iOS. The

high accuracy of the model suggested the possibility of

overfitting which is when the model does not generalize

well from observed data to unseen data [42]. This suspicion

was confirmed during experimentation on real devices. As

such, we implemented several regularization techniques. We

implemented L2 regularization in each hidden layer. The L2

regularizer is controlled by the lambda (λ) parameter, which

can take any value between 0 and infinity, where a larger

value enforces more regularization. To mitigate the risk of

overfitting, we employed an iterative approach to identify

the maximum lambda value that did not lead to vanishing

gradients. Through experimentation we found that a lambda

value of 0.01 was suitable. We also included a dropout layer

with a 50% dropout rate between each layer, as well as

batch normalization. Dropout layers randomly set a fraction

of input units to zero to prevent overfitting, while batch

normalization normalizes and scales activations to enhance

training efficiency and overall model performance. Using this

approach we reached a more plausible accuracy of 83.83%

and 82.66% for Android and iOS respectively. The model

was designed to classify between bus, metro, train, tram
and alternative modes (ALTM). The ALTM class is used to

differentiate between public transport vehicles and not and

consists of a variety of data captured in different modes,

such as walking, bicycling, e-scooter, ferry and car. Table I

presents the different parameters and values explored, as well

as the best reported parameter in each category, in addition

to the best accuracy based on the two holdout sets.

TABLE I: Grid Search Hyperparameters

Optimization

Parameter Values Best

Learning Rate 0.0001, 0.0002, 0.0003,
0.0004, 0.0005, 0.0006,
0.0007, 0.0008, 0.0009

0.0004

Activation relu relu
Optimizer adam, rmsprop adam
Initializer glorot uniform,

he normal
glorot uniform

Architectural

Parameter Values Best

# Layers 1 to 15 14
# Nodes 100, 150, 200, 250, 300,

350, 400, 450, 500, 550,
600, 650, 700, 750, 800,
850, 900, 950, 1000

800

Android accuracy 99.3 %
iOS accuracy 99.6 %

After defining our model architecture, we scaled the data

in order to ensure that all features contribute equally to

the model’s performance. We selected the MinMax scaler

for this task, which is one of the most widely recognized

approaches for normalization and have outperformed other

scaling techniques in previous works [43]. The MinMax

scaler transforms the data by rescaling each feature to a

range between 0 and 1. The MinMax scaler achieves this

by subtracting the minimum value of the feature and then

dividing by the range of the values. The MinMax scaler

works as follows:

Given a feature x with minimum value xmin

and maximum value xmax, the MinMax scaling is defined as:

xscaled =
(x− xmin)

(xmax − xmin)

This transforms x to a new value xscaled in the range [0, 1].

This method preserves the relationships between the original

data points while standardizing the scale, making it par-

ticularly suitable for models sensitive to feature magnitude

differences, such as neural networks. Neural networks, such

as the Multilayer Perceptron (MLP) used in this work, uses

gradient decent-based methods for training. Unscaled features

can cause gradients to be disproportionately large or small and

by scaling we eliminate this problem.

C. Experiment Design

To test the model in a real-world setting, two native applica-

tions were developed, one for Android and one for iOS. These

applications functioned as wrappers for our cross-platform

model and enabled measurements of inference time and energy

consumption. In addition, through the interface it was possible

to label wrongly classified modes. For the solution to be

practical, it was important to investigate whether the actual,

observed accuracy of the implemented model deviated from

the statistical accuracy derived from the holdout set of the

training data. Furthermore, investigations into performance

aspects such as the inference time on-device and the energy

consumption were relevant as well. Regardless of accuracy,

if the time to make a classification is excessively prolonged

or if the energy usage is disproportionately high, it would be

impractical to implement in a real-world scenario. With this

type of real-world experiment, where numerous factors can

impact the results, the goal was to evaluate the applicability of

the solution across a variety of devices. One challenge related

to device heterogeneity is that software and hardware can vary

significantly across different manufacturers and models, which

in turn can prove challenging when building cross-platform

solutions, especially when it comes to machine learning, where

minute differences might tip the scale over in a different

outcome. As such, a small but diverse set of devices were

used during experimentation. This would enable the detection

of any potential malfunction of the application, as well as

ensuring that the adjustments made to wrong classifications

were exact. In order to assess our cross-platform model in a

real-world context we installed the applications on a diverse
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set of devices, representing both older and newer devices

of both platforms. Details about the devices used for this

experiment can be viewed in Table II. These devices were then

used to evaluate aspects relating to accuracy, inference time

and energy consumption, in all the aforementioned modes of

transportation.

TABLE II: Device Overview

Device OS Version Battery
Capacity
(mAh)

Sony Xperia 1 (J9110) Android 11 (30) 3330
Pixel 7a Android 14 (34) 4385
Samsung Galaxy S21 FE
(SM-G990B) Android 14 (34) 4500
Samsung Galaxy S22 Ultra
(SM-S908B)

Android 14 (34) 5000

Samsung Galaxy S23
(SM-S911B) Android 14 (34) 3900
iPhone 8 iOS 16.7.10 1821
iPhone 13 iOS 17.2.1 3240

Other than software and hardware challenges, there are also

challenges related to positioning. Some of the features the

model is trained on are directional sensor values. This means

that device movement in specific direction during inference

may influence the results. Furthermore, public transport ve-

hicles, especially trains, trams and subways may have seats

facing different directions, such as forwards, backwards and

sideways, which also could impact the results. Moreover,

the actual position of the device can also vary, whether it

is held in hand or stored in a pocket or backpack. While

the training dataset was labeled with device position (hand,

pocket, other), the seating direction was not labeled. In a

production environment, this kind of solution would have to

work regardless of device direction or placement, as such we

used data labeled with both hand, pocket and other. On the

other hand, it is difficult to systematically evaluate all possible

positions of a device in a real-life context. Therefore, for this

experiment we evaluated the model while allowing all natural

directions, however always with the device in hand.

IV. RESULTS

The real-life test scenario resulted in a total of 4999 classi-

fications. In this section we present results in terms of actual

accuracy, in addition to measured inference time and energy

usage. We separate the results from Android and iOS. While

it is the exact same model tested it is relevant to investigate

the differences between the two platforms.

A. Model Accuracy

As previously mentioned, after each classification a file was

stored on the device holding the classification from the model,

in addition to the eventual correction made by the user. Based

on this information it is possible to construct a classification

report and a confusion matrix for both platforms.

1) Android: Figure 1 displays the confusion matrix derived

from the holdout set with data from Android devices, while

figure 2 shows the confusion matrix based on the real-world

experiment. Table III exhibits the classification reports of the

model based on the holdout set and based on the real-life

implementation. From the classification report we can see

that the model is able to successfully classify bus, metro and

alternative modes with high accuracy. Classification of train

and tram is suboptimal. A highly encouraging observation

is that there are very few wrong classifications between the

public transportation modes and other. If we group all the

public transport classes together and look at the classification

accuracy between public transport and alternative we achieve

roughly 99% accuracy.

Fig. 1: Confusion Matrix Android - Holdout set of original data

Fig. 2: Confusion Matrix Android - Real-life experiment

2) iOS: Figure 3 and figure 4 shows the confusion matrix

derived from the holdout set with data from iOS devices

and from the real-world experiment, respectively. Table IV

shows the classification report based on both the holdout

set, as well as the real-world experiment. Analogous to the

Android results, a high performance can be observed when

classifying bus, metro and other, while the modes train and

tram is more difficult to classify. Similar to that of the

results pertaining to data collected on Android devices, by

grouping the public transportation modes together, we are able
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Class Precision Recall F1-Score Support
Holdout set

BUS 0.92 0.86 0.89 97846
METRO 0.95 0.82 0.88 51346
ALTM 0.93 0.86 0.89 59951
TRAIN 0.35 0.89 0.51 5932
TRAM 0.48 0.76 0.59 13300
Accuracy 0.85 228375

Real-life Experiment
BUS 0.60 0.78 0.68 954
METRO 0.57 0.92 0.70 451
ALTM 0.89 0.97 0.92 271
TRAIN 0.63 0.34 0.44 981
TRAM 0.60 0.49 0.54 833
Accuracy 0.62 3490

TABLE III: Classification Report Android

to accurately distinguish between public transport vehicles and

the ALTM class on iOS devices as well.

Fig. 3: Confusion Matrix iOS - Holdout set of original data

Fig. 4: Confusion Matrix iOS - Real-life test

3) Correlation of Results and Training Data: We observed

a suboptimal performance when classifying tram and train on

both platforms and a likely cause for this is a lack of training

data in these modes. Figure 5 shows the correlation between

the amount of training data and the number of incorrect

classifications across both platforms. We can observe that

the modes tram and train have significantly fewer training

samples than the other modes. However, although there are

Class Precision Recall F1-Score Support
Holdout set

BUS 0.97 0.82 0.89 116187
METRO 0.82 0.85 0.84 24784
ALTM 0.86 0.86 0.86 40960
TRAIN 0.53 0.86 0.66 14742
TRAM 0.47 0.79 0.59 11358
Accuracy 0.83 208031

Real-life Experiment
BUS 0.93 0.89 0.90 1036
METRO 0.60 0.86 0.71 306
ALTM 1.00 0.84 0.91 176
TRAIN 0.60 0.11 0.18 509
TRAM 0.37 0.65 0.47 482
Accuracy 0.67 2509

TABLE IV: Classification Report iOS

considerable more data captured onboard busses than metro

and other, there are also more incorrect classifications than

metro and ALTM. As such, the lack of data is probably not

the only cause for incorrect classifications and it could be that

the relationship between sensor values and the modes train

and tram, is less explicit than it is for instance on metro.

Fig. 5: Correlation of Results and Training Data - Both Platforms

B. Inference Time and Energy Consumption

The duration for the model to make each classification was

also recorded. The average inference time for the model to

make a classification on Android devices was 5.31 millisec-

onds (ms). However, the inference time varied significantly

between less than 1 ms to 74 ms. For iOS devices the average

inference time was 2.05 ms and ranged from less than 1 ms

to 68 ms. Figure 6 shows the distribution of the registered

inference times across all devices. We can see that there are

significant differences in the time the model need to make

a classification between the different devices. However, in

terms of overall viability, less than 74 ms is well within

acceptable range. Figure 7 shows the relationships between

the inference times and the predicted mode. It is interesting to

note that there are fairly large variations in the inference time

when predicting different modes. We also estimated the energy

consumption based on three of the Android devices. While

energy consumption is not the main focus of this work, it is

important to gauge the consumed energy in order to make an

informed decision about the viability of this kind of solution.

Using a hardware-based energy measurement approach was
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difficult as we wanted to assess the actual consumption during

inference onboard public transport vehicles. We observed a

relationship between the inference times and the different

modes of transportation. As such, the energy consumption

could also be dependent on the mode and a stationary en-

ergy estimation using hardware-based measurement would not

necessarily be accurate. We used the Android Debug Bridge

(ADB) to extract energy measurements from our application

and estimated a total energy consumption for our application

running the model to be between 0.83 % to 2.79% per hour.

This is a rough estimate, including energy consumed by the

screen, which was on continuously during experimentation in

order to correctly label the results. The energy consumption

of the screen is significant and makes up most of the energy

consumed. For some devices, such as the SM-S911B The

energy consumed by the screen during our experiment is

registered to be 143 mAh per hour for our application, while

the total energy consumed is reported to be 177 mAh per hour.

Fig. 6: Inference Times Across All Devices

Fig. 7: Inference Times Across All Modes

Figure 8 shows the relationship between the Android de-

vices and correct and incorrect classifications in the different

modes. It is interesting to note that while most devices are

able to classify the mode bus with high accuracy, the amount

of incorrect classifications in this mode with the Pixel 7a

is significantly higher. In relation to the inference time and

energy consumption we also saw that the inference time for

the Pixel 7a was significantly longer, while at the same time

having a much smaller energy footprint. We did not go deeper

into the details of this, however it could be aspects relating to

the hardware or software of the Pixel that influence this.

Fig. 8: Correct and Incorrect Classifications per Device

V. DISCUSSION

In this work we presented, to our knowledge, the first

neural networok-based platform-agnostic model for local

TMD, able to infer the mode of transportation on-device

on both Android and iOS. We evaluated the model in a

real-life context and investigated aspects such as actual

accuracy and inference time. In addition, we gauged the

energy consumption of the Android devices. We saw that

the model is able to classify modes such as bus, metro

and other with high accuracy, however the modes train and

tram lead to suboptimal results. Although, most other works

only evaluate their solutions based on cross-validation [15],

[23] or holdout sets [22], very few works implement their

solutions in a real-life setting. From the works that have been

implemented and tested in a real-life setting [18], [19], we see

that discrepancies between evaluations based on the original

data and real-life data are present in some of these works

as well [18]. This is likely a result of overfitting, similar to

what we observed for our model. While our model struggled

with discerning train and tram, we see that the random forest

classifier used in a real-world setting struggled with the mode

bus [18]. As the authors of that work points out, running

models on real transport vehicles, using real devices is much

more challenging and the results are rarely as good as when

evaluated in lab setting or simulated environment. This is our

experience as well and as we have seen in this work and

previous work [18], evaluations based on simulations can be

misleading. While overfitting was a problem, another likely

reason for our model to struggle with the modes train and tram

is lack of training data within these modes. We saw that the

model was trained on significantly less data captured onboard
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trams and trains than for the other modes. We did balance

our dataset using SMOTE [41], so that there were an equal

number of samples of all classes, however, for modes with

a smaller amount of original samples, there would then be a

much larger amount of synthetic data, compared to classes

with more original data. By synthesizing data we do not

expand the spectrum of possible values, instead we generate

more similar values. As such, more data collected within the

minority modes would likely increase the overall accuracy.

It is also important to keep in mind that the goal of this

work was to investigate whether a lightweight, cross-platform

model for on-device TMD could be achieved. As such, we

deliberately reduced the available features significantly to

only employing four sensors and seven aggregation functions.

By incorporating more features, such as rotation vectors or

the amplitude of ambient noise [7] we might have achieved a

higher accuracy in the problematic classes.

Although, classification on trains and trams were

suboptimal, looking at this in the context of automated

ticking, we achieved a very high accuracy on both platforms

when classifying whether a traveler was on a public

transportation vehicle or not. Previous work have attempted

to achieve automated ticketing using Bluetooth beacons

and similar [38], [39], however the main issue with these

approaches is that the range of the Bluetooth signal transcends

the confines of the vehicle. This leads to people walking

next to the vehicle to be in range of the Bluetooth signal

and as such subject to ticketing. The results from our work

could be taken advantage of in combination with a Bluetooth

approach to significantly limit this problem. On-device

TMD can also be used in combination with GPS to achieve

in-vehicle presence detection [37]. Our model also performed

well in terms of inference time, we saw that the average

inference time was between 2 and 6 ms and that the longest

recorded inference time was 74 ms, which is well within

acceptable bounds compared to previous work [31], [37].

TMD takes to a large degree advantage of similar techniques

and approaches as activity recognition. Although different

algorithm and different devices, previous work on TMD have

reported average inference times of 32 ms to 59 ms [37],

while work on activity recognition algorithms running on

device have reported inference times between 228 ms and

292ms [31]. We saw that the average inference time varied

significantly from device to device. The pre-inference data

collection being conducted on device is to a large degree

dependent on the operating system allocating resources to the

sensor service and as such the amount of data amassed in the

collection period varies significantly. However, this should

not influence the inference time since the time is measured

after the data is collected and processed and as such the

amount of data fed into the model is always the same. All

the devices have different hardware and software, and a

discrepancy in inference time between the different devices is

to be expected. However, an interesting observation that we

made was that the inference time also varied depending on

the mode of transportation being classified. This is harder to

explain and we did not investigate this in-depth, although a

possible explanation is that the modes requiring longer time

might be more difficult for the model to classify.

We also gauged the energy consumption using three

different Android devices, similar to what was done in [18],

[19]. We see that the energy usage of our proposed solution

is similar to the reported energy consumption in [18], [19].

However, our measurements include energy consumed from

the screen, which was on continuously, while in [18], the

screen was off. Thus, our estimates promises a more energy

efficient solution than that of [18]. That being said, there

are of course nuances to this. First of all, the device would

have to run the operating system and everything else on the

device for the application to function which would require

energy. Moreover, the battery’s behavior changes over time

and is subject to temperature differences, in addition to

behave differently depending on the general load [36]. As

such, this is not an accurate measure but more of a rough

estimate. An interesting aspect of the energy consumption

in relation to the inference time is that the device with the

fastest inference time (SM-S911B) was also the device with

the highest reported energy expenditure. Similarly the device

with the slowest inference time (Pixel 7a) had the lowest

energy usage. This may be a result of hardware and software

differences between the devices. These estimates indicates

that the energy consumption on device is fairly low, which

attests to the viability of this kind of solution running on

device.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented to the best of our knowledge

the first local platform-agnostic neural network for TMD.

The lightweight model is able to run solely on-device,

without the need of any centralized solution or network

transmission. The model performed well when distinguishing

between the classes bus, metro and alternative modes and

if all the public transport classes are grouped together we

are able to distinguish between alternative modes and public

transportation modes with an accuracy of 99% on both

Android and iOS. This can be taken advantage of in order

to improve existing solutions for automated ticketing, such

as Bluetooth- or GPS-based solutions. We evaluated the

inference time, which was between less than 1 ms up to

74 ms across all devices and both platforms. The energy

consumed by our implementation on Android, including

both pre-inference sensor data collection, pre-processing of

the collected data and the inference itself was negligible,

with the highest recorded energy consumption of 34 mAh

per hour. The results of this work shows that it is possible

to provide TMD, either stand-alone or as a component to

improve automated ticketing with a minimal energy footprint

on-device without the need of external equipment or a

centralized solution.

In the future we would like to improve our model by

amassing more data captured within the problematic modes,
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as well as conducting a deeper investigation into the prob-

lem of overfitting. Furthermore, it could be worthwhile to

consider applying reinforcement learning techniques in order

to calibrate the model to a given traveler or device. Future

investigations should also incorporate a more in-depth anal-

ysis of energy consumption on both platforms. Moreover,

it would be interesting to investigate differences in energy

consumption for different machine learning algorithms running

on device. As mentioned, an applied implication is that TMD

could potentially be taken advantage of in order to improve

existing works on automated ticketing and in-vehicle presence

detection and it could be insightful to explore this combination

in a real-life setting.
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